Câu hỏi:
Cho x, y, z là các số thực thỏa mãn . Rút gọn .
A. P=0
B.P=xy
C. P=2xy
Đáp án chính xác
D. p=3xy
Trả lời:
Đáp án C- Nếu một trong ba số bằng 0 thì P=0- Nếu ta đặt
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình thang ABCD có AB//CD,AB=8,CD=4. Gọi I là giao điểm của hai đường chéo và J là giao điểm của hai cạnh bên. Phép biến hình biến vectơ AB→ thành vectơ CD→là phép vị tự nào sau đây?
Câu hỏi:
Cho hình thang ABCD có Gọi I là giao điểm của hai đường chéo và J là giao điểm của hai cạnh bên. Phép biến hình biến vectơ thành vectơ là phép vị tự nào sau đây?
A.
B.
C.
Đáp án chính xác
D.
Trả lời:
Đáp án C. Vậy
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một hình chóp cụt có đáy là n giác thì hình chóp đó có số mặt và số cạnh là
Câu hỏi:
Một hình chóp cụt có đáy là n giác thì hình chóp đó có số mặt và số cạnh là
A. n+2 mặt, 3n cạnh
Đáp án chính xác
B. n+2 mặt, 2n cạnh.
C. n+2 mặt, n cạnh.
D. n mặt, 3n cạnh
Trả lời:
Đáp án A
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình hộp ABCD.A'B'C'D'. Xác định các điểm M, N tương ứng trên các đoạn AC’ và B’D’ sao cho MN//BA' và tính tỉ số MAMC'.
Câu hỏi:
Cho hình hộp . Xác định các điểm M, N tương ứng trên các đoạn AC’ và B’D’ sao cho và tính tỉ số .
A.1
B.2
Đáp án chính xác
C.3
D.4
Trả lời:
Đáp án BXét phép chiếu song song lên mặt phẳng theo phương chiếu .Ta có N là ảnh của M hay Do đó ta xác định M, N như sau:Trên A’B’ kéo dài lấy điểm K sao cho thì là hình bình hành nên .Gọi . Đường thẳng qua N và song song với AK cắt AC’ tại MTa có M, N là các điểm cần xác định.Theo định lý Thales:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tứ diện đều ABCD, M là trung điểm BC. Tính cosin của góc giữa hai đường thẳng AB và DM?
Câu hỏi:
Cho tứ diện đều ABCD, M là trung điểm BC. Tính cosin của góc giữa hai đường thẳng AB và DM?
A.
Đáp án chính xác
B.
C.
D.
Trả lời:
Đáp án AGiả sử tứ diện đều cạnh aGọi H là tâm đường tròn ngoại tiếp Gọi E là trung điểm Ta có
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a,AD=a2 . Gọi H là trung điểm của cạnh AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa hai mặt phẳng SAC và ABCD là 60°. Tính khoảng cách giữa hai đường thẳng CH và SD.
Câu hỏi:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với . Gọi H là trung điểm của cạnh AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa hai mặt phẳng và là . Tính khoảng cách giữa hai đường thẳng CH và SD.
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
Đáp án DTa có Gọi I là hình chiếu của H trên ACGóc giữa hai mặt phẳng và là góc Gọi K đối xứng với H qua Gọi E, F lần lượt là hình chiếu của H trên DK và
====== **** mời các bạn xem câu tiếp bên dưới **** =====