Câu hỏi:
Cho khối chóp tứ giác S.ABCD. Mặt phẳng đi qua trọng tâm các tam giác SAB, SAC, SAD chia khối chóp này thành hai phần có thể tích là \({V_1}\) và \({V_2}\left( {{V_1} < {V_2}} \right)\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).
A. \(\frac{8}{{27}}.\)
B. \(\frac{{16}}{{81}}.\)
C. \(\frac{8}{{19}}.\)
Đáp án chính xác
D. \(\frac{{16}}{{75}}.\)
Trả lời:
Đáp án C
Gọi \({G_1},{G_2},{G_3}\) lần lượt là trọng tâm các tam giác SAB, SAD, SAC.
Gọi I, J lần lượt là trung điểm của các cạnh AB, AC.
\( \Rightarrow \frac{{S{G_1}}}{{SI}} = \frac{{S{G_3}}}{{SJ}}\left( { = \frac{2}{3}} \right) \Rightarrow {G_1}{G_3}//IJ \Rightarrow {G_1}{G_3}//\left( {ABC} \right)\).
Tương tự \({G_2}{G_3}//\left( {ABC} \right) \Rightarrow \left( {{G_1}{G_2}{G_3}} \right)//\left( {ABCD} \right)\)
Qua \({G_1}\) dựng đường song song với AB, cắt SA, SB lần lượt tại M, N.
Qua N dựng đường song song với BC, cắt SC tại P.
Qua P dựng đường song song với CD, cắt SD tại Q.
Thiết diện của hình chóp S.ABCD khi cắt bởi \(\left( {{G_1}{G_2}{G_3}} \right)\) là tứ giác MNPQ.
Ta có \(\frac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}}.\frac{{SN}}{{SB}}.\frac{{SP}}{{SC}} = \frac{2}{3}.\frac{2}{3}.\frac{2}{3} = \frac{8}{{27}} \Rightarrow {V_{S.MNP}} = \frac{8}{{27}}{V_{S.ABC}}\)
Tương tự \({V_{S.MPQ}} = \frac{8}{{27}}{V_{S.ACD}} \Rightarrow {V_{S.MNPQ}} = {V_{S.MNP}} + {V_{S.MPQ}} = \frac{8}{{27}}{V_{S.ABCD}}\).
\( \Rightarrow {V_{ABCD.MNPQ}} = {V_{S.ABCD}} – {V_{S.MNPQ}} = \frac{{19}}{{27}}{V_{S.ABCD}} \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{8}{{27}}{V_{S.ABCD}}}}{{\frac{{19}}{{27}}{V_{S.ABCD}}}} = \frac{8}{{19}}.\)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x – 2y + z + 3 = 0\). Mặt phẳng \(\left( P \right)\) đi qua điểm có tọa độ nào dưới đây?
Câu hỏi:
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x – 2y + z + 3 = 0\). Mặt phẳng \(\left( P \right)\) đi qua điểm có tọa độ nào dưới đây?
A. \(\left( { – 1;2;0} \right).\)
B. \(\left( {1; – 2;0} \right).\)
C. \(\left( { – 1; – 2;0} \right).\)
D. \(\left( {1;2;0} \right).\)
Đáp án chính xác
Trả lời:
Đáp án D
Mặt phẳng \(\left( P \right)\) đi qua điểm có tọa độ \(\left( {1;2;0} \right)\) vì \(1 – 2.2 + 0 + 3 = 0\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số phức \(z = 6 + 8i\) có môđun bằng:
Câu hỏi:
Số phức \(z = 6 + 8i\) có môđun bằng:
A. 5.
B. 14.
C. 10.
Đáp án chính xác
D. \(\sqrt {14} .\)
Trả lời:
Đáp án C
Số phức \(z = 6 + 8i\) có môđun bằng====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đạt cực tiểu tại:
Câu hỏi:
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đạt cực tiểu tại:A. x = 1
Đáp án chính xác
B. x = -2
C. x = -1
D. x = 2
Trả lời:
Đáp án A
Hàm số \(f\left( x \right)\) đạt cực tiểu tại \(x = 1\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Với a là số thực dương tùy ý, log28a bằng
Câu hỏi:
Với a là số thực dương tùy ý, bằng
A. \( – 8{\log _2}a.\)
B. \(3 – {\log _2}a.\)
Đáp án chính xác
C. \(\frac{8}{{{{\log }_2}a}}.\)
D. \(3 + {\log _2}a.\)
Trả lời:
Đáp án B
Ta có \({\log _2}\frac{8}{a} = {\log _2}8 – {\log _2}a = 3 – {\log _2}a\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho ∫01fxdx=3. Tính I=∫012fxdx.
Câu hỏi:
Cho . Tính .
A. \(I = 3.\)
B. \(I = \frac{2}{3}.\)
C. \(I = 6.\)
Đáp án chính xác
D. \(I = \frac{3}{2}.\)
Trả lời:
Đáp án C
Ta có .====== **** mời các bạn xem câu tiếp bên dưới **** =====