Câu hỏi:
Cho hình lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) vuông tại \(A,AB = a\sqrt 3 ,AC = AA’ = a.\) Sin góc giữa đường thẳng \(AC’\) và mặt phẳng \(\left( {BCC’B’} \right)\) bằng
A.\(\frac{{\sqrt 6 }}{3}.\)
B.\(\frac{{\sqrt 6 }}{4}.\)
Đáp án chính xác
C.\(\frac{{\sqrt 3 }}{3}.\)
D.\(\frac{{\sqrt {10} }}{4}.\)
Trả lời:
Đáp án B.
Trong mặt phẳng \(\left( {ABC} \right)\) kẻ \(AH \bot BC\) với \(H \in BC.\)
Do \(BB’ \bot \left( {ABC} \right) \Rightarrow BB’ \bot AH.\) Suy ra \(AH \bot \left( {BCC’B’} \right).\)
Khi đó góc giữa đường thẳng \(AC’\) và mặt phẳng \(\left( {BCC’B’} \right)\) là góc giữa đường thẳng \(AC’\) và đường thẳng \(HC’\) hay là góc \(\widehat {AC’H}.\)
Ta có \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {3{a^2} + {a^2}} = 2a;AC’ = AC\sqrt 2 = a\sqrt 2 \)
Khi đó trong tam giác \(ABC\) vuông tại \(A\) ta có:
\(AH.BC = AB.AC \Leftrightarrow AH = \frac{{AB.AC}}{{BC}} = \frac{{a\sqrt 3 .a}}{{2a}} = \frac{{a\sqrt 3 }}{2}.\)
Trong tam giác \(AHC’\) vuông tại \(H\) ta có: \(\sin \widehat {AC’H} = \frac{{AH}}{{AC’}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4}.\)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho \(a,b\) là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
Câu hỏi:
Cho \(a,b\) là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
A.\(\ln \left( {a{b^2}} \right) = \ln a + {\left( {\ln b} \right)^2}.\)
B.\(\ln \left( {ab} \right) = \ln a.\ln b.\)
C.\(\ln \left( {a{b^2}} \right) = \ln a + 2\ln b.\)
Đáp án chính xác
D. \(\ln \frac{a}{b} = \frac{{\ln a}}{{\ln b}}.\)
Trả lời:
Đáp án C.
\(\ln \left( {a{b^2}} \right) = \ln a + \ln {b^2} = \ln a + 2\ln b.\) Do đó câu A sai.
\(\ln \left( {ab} \right) = \ln a + \ln b\) nên câu B sai.
\(\ln \frac{a}{b} = \ln a – \ln b\) nên câu D sai.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên ở hình vẽ. Hàm số có giá trị cực tiểu bằng
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên ở hình vẽ. Hàm số có giá trị cực tiểu bằng
A.1.
B.3.
C.\( – 1.\)
D. 0.
Đáp án chính xác
Trả lời:
Đáp án D.
Dựa vào bảng biến thiên ta thấy \(y’\) đổi dấu từ âm sang dương khi \(x\) đi qua \({x_1} = – 1\) và \({x_3} = 1.\)
Mặt khác \(y\left( { – 1} \right) = y\left( 1 \right) = 0.\)
Vậy giá trị cực tiểu của hàm số là 0.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tập hợp \(A\) có 26 phần tử. Hỏi \(A\) có bao nhiêu tập con gồm 6 phần tử?
Câu hỏi:
Cho tập hợp \(A\) có 26 phần tử. Hỏi \(A\) có bao nhiêu tập con gồm 6 phần tử?
A.\(A_{26}^6.\)
B. 26.
C.\({P_6}.\)
D. \(C_{26}^6.\)
Đáp án chính xác
Trả lời:
Đáp án D.
Số các tập con bằng số tổ hợp chập 6 của 26: \(C_{26}^6.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong mặt phẳng tọa độ \(Oxy,\) ảnh của điểm \(M\left( { – 6;1} \right)\) qua phép vị tự tâm \(O\) tỷ số \(k = 2\) là
Câu hỏi:
Trong mặt phẳng tọa độ \(Oxy,\) ảnh của điểm \(M\left( { – 6;1} \right)\) qua phép vị tự tâm \(O\) tỷ số \(k = 2\) là
A.\(M’\left( {12; – 2} \right).\)
B.\(M’\left( {1; – 6} \right).\)
C.\(M’\left( { – 12;2} \right).\)
Đáp án chính xác
D. \(M’\left( { – 6;1} \right).\)
Trả lời:
Đáp án C.
Phép vị tự tâm \(O\left( {0;0} \right)\) tỉ số \(k = 2\) biến điểm \(M\left( { – 6;1} \right)\) thành điểm \(M’\left( {x’;y’} \right)\) thỏa mãn:
\(\left\{ \begin{array}{l}x’ = – 6.2\\y’ = 1.2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x’ = – 12\\y’ = 2\end{array} \right. \Rightarrow M’\left( { – 12;2} \right)\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hàm số nào dưới đây nghịch biến trên tập xác định của nó?
Câu hỏi:
Hàm số nào dưới đây nghịch biến trên tập xác định của nó?
A.\(y = \ln x.\)
B.\(y = {\log _{\frac{2}{3}}}x.\)
Đáp án chính xác
C.\(y = \log x.\)
D. \(y = {\log _{\frac{5}{2}}}x.\)
Trả lời:
Đáp án B.
Hàm số \(y = {\log _a}x\) nghịch biến trên tập xác định khi \(0 < a < 1.\)
Vậy hàm số \(y = {\log _{\frac{2}{3}}}x\) nghịch biến trên tập xác định.====== **** mời các bạn xem câu tiếp bên dưới **** =====