Câu hỏi:
Cho hàm số y=f(x) có đạo hàm trên R. Mệnh đề nào dưới đây là đúng?
A. Nếu hàm số đạt cực trị tại thì đạo hàm đổi dấu khi x qua .
Đáp án chính xác
B. Nếu đạo hàm đổi dấu khi x qua thì hàm số đạt cực tiểu tại .
C. Nếu \(f’\left( {{x_0}} \right) = 0\) thì hàm số đạt cực trị tại .
D. Nếu thì hàm số không đạt cực trị tại .
Trả lời:
Phương pháp giải:
Sử dụng lý thuyết về Cực trị của hàm số:
Ta có: là điểm cực trị của hàm số \(y = f\left( x \right) \Leftrightarrow \) tại điểm thì hàm số có y’ đổi dấu từ dương sang âm hoặc ngược lại.
Điểm là điểm cực tiểu của hàm số tại điểm thì hàm số có y’ đổi dấu từ âm sang dương.
Điểm là điểm cực đại của hàm số tại điểm thì hàm số có y’ đổi dấu từ dương sang âm.
Ta có: là điểm cực trị của hàm số
Điểm là điểm cực đại của hàm số
Điểm là điểm cực tiểu của hàm số
Giải chi tiết:
Ta có: là điểm cực trị của hàm số tại điểm thì hàm số có y’ đổi dấu từ dương sang âm hoặc ngược lại.
⇒ Đáp án A đúng.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Thể tích khối cầu có bán kính r là:
Câu hỏi:
Thể tích khối cầu có bán kính là:
A.
Đáp án chính xác
B.
C.
D.
Trả lời:
Phương pháp giải:
Thể tích khối cầu có bán kính là .
Giải chi tiết:
Thể tích khối cầu có bán kính là .
Đáp án A.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho dãy số \(\left( {{u_n}} \right)\) là cấp số nhân có số hạng đầu u1=1, công bội q=2. Tổng ba số hạng đầu của cấp số nhân là:
Câu hỏi:
Cho dãy số \(\left( {{u_n}} \right)\) là cấp số nhân có số hạng đầu , công bội . Tổng ba số hạng đầu của cấp số nhân là:
A. 9
B. 3
C. 5
D. 7
Đáp án chính xác
Trả lời:
Phương pháp giải:
Tổng n số hạng đầu tiên của CSN có số hạng đầu , công bội q là .
Giải chi tiết:
Tổng ba số hạng đầu của cấp số nhân có và là:
Đáp án D====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đường cong trong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây?
Câu hỏi:
Đường cong trong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây?
A.
B.
C.
Đáp án chính xác
D.
Trả lời:
Phương pháp giải:
– Hàm số có TXĐ .
+ Khi , hàm số đồng biến trên D.
+ Khi 0 < a < 1, hàm số nghịch biến trên D.
– Hàm số có TXĐ .
+ Khi , hàm số đồng biến trên D.
+ Khi , hàm số nghịch biến trên D.
Giải chi tiết:
Dựa vào đồ thị ta thấy hàm số đồng biến trên \(\mathbb{R}\) nên chỉ có đáp án C thỏa mãn, tức là hàm số
Đáp án C.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm tập nghiệm S của phương trình (20202021)4x=(20212020)2x−6.
Câu hỏi:
Tìm tập nghiệm S của phương trình .
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
Phương pháp giải:
– Sử dụng công thức .
– Giải phương trình mũ dạng .
Giải chi tiết:
Ta có:
Vậy tập nghiệm của phương trình là .
Đáp án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm tập hợp tất cả các giá trị của tham số m để hàm số y=1log3(x2−2x+3m)có tập xác định là \(\mathbb{R}\).
Câu hỏi:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số có tập xác định là \(\mathbb{R}\).
A.
B.
Đáp án chính xác
C.
D.
Trả lời:
Phương pháp giải:
– Hàm căn thức xác định khi biểu thức trong căn không âm.
– Hàm xác định khi và chỉ khi xác định và .
Giải chi tiết:
Hàm số có TXĐ là \(\mathbb{R}\) khi và chỉ khi:
Đặt ta có .
BBT:
Dựa vào BBT và từ (*) ta có .
Vậy .
Đáp án B====== **** mời các bạn xem câu tiếp bên dưới **** =====