Câu hỏi:
Cho hàm số . Tập nghiệm của bất phương trình f'(x) ≤ 0 là:
A.
Đáp án chính xác
B. [-2;2]
C.
D. R
Trả lời:
Chọn A- Ta có:– Suy ra bất phương trình vô nghiệm.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số f(x)liên tục trên đoạn [a ; b] và f(a) = b, f(b) = a, với 0 < a < b. Khi đó phương trình nào trong các phương trình sau đây luôn có nghiệm trên khoảng (a, b).
Câu hỏi:
Cho hàm số f(x)liên tục trên đoạn [a ; b] và f(a) = b, f(b) = a, với 0 < a < b. Khi đó phương trình nào trong các phương trình sau đây luôn có nghiệm trên khoảng (a, b).
A.
B.
C.
Đáp án chính xác
D.
Trả lời:
Chọn C.- Hàm số g(x) = f(x) – x xác định và liên tục trên đoạn [a ; b].– Suy ra: phương trình f(x) – x = 0 luôn có nghiệm trên khoảng (a, b).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Kết quả L=lim(5n-7n5) là
Câu hỏi:
Kết quả là
A.
B.
Đáp án chính xác
C. 5
D. -7
Trả lời:
Chọn B.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC^=60° . Biết SA = SB = SC = a. Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng:
Câu hỏi:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc . Biết SA = SB = SC = a. Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng:
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
Chọn D.– Gọi G là trọng tâm tam giác ABC.- Hình chóp S.ABC là hình chóp đều nên SG ⊥ (ABC).→ Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một cấp số cộng gồm 8 số hạng với số hạng đầu bằng – 15 và số hạng cuối là 69. Tìm công sai của cấp số cộng.
Câu hỏi:
Một cấp số cộng gồm 8 số hạng với số hạng đầu bằng – 15 và số hạng cuối là 69. Tìm công sai của cấp số cộng.
A. -12
B. 10
C. 12
Đáp án chính xác
D. 10,5
Trả lời:
Chọn C- Theo đầu bài ta có: – Ta có:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình chóp S.ABCD có SA⊥(ABC) và tam giác ABC vuông ở B. Gọi AH là đường cao của tam giác SAB. Khẳng định nào sau đây sai?
Câu hỏi:
Cho hình chóp S.ABCD có SA⊥(ABC) và tam giác ABC vuông ở B. Gọi AH là đường cao của tam giác SAB. Khẳng định nào sau đây sai?
A. SA⊥BC
B. AH⊥AC
Đáp án chính xác
C. AH⊥SC
D. AH⊥BC
Trả lời:
Chọn B.+) Vì tam giác ABC vuông tại B nên BC ⊥ AB.- Lại có:+) Theo gt AH ⊥ SB vậy:– Do đó AH không thể vuông góc với AC.(Một tam giác không thể có đồng thời hai góc vuông)
====== **** mời các bạn xem câu tiếp bên dưới **** =====