Câu hỏi:
Một nhà khoa học nghiên cứu về tác động phối hợp của vitamin A và vitamin B đối với cơ thể con người. Kết quả như sau:
– Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B.
– Một người mỗi ngày cần từ 400 đến 1 000 đơn vị vitamin cả A và B.
Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị vitamin B không ít hơn số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A.
Biết giá một đơn vị vitamin A là 9 đồng và giá một đơn vị vitamin B là 7,5 đồng. Phương án dùng hai loại vitamin A, B thoả mãn các điều kiện trên để có số tiền phải trả là ít nhất là:
A. 500 đơn vị vitamin A và 500 đơn vị vitamin B;
B. 600 đơn vị vitamin A và 400 đơn vị vitamin B;
C. 600 đơn vị vitamin A và 300 đơn vị vitamin B;
D. 100 đơn vị vitamin A và 300 đơn vị vitamin B.
Đáp án chính xác
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Gọi x là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày. (x ≥ 0)
Gọi y là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày. (y ≥ 0)
Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B nên x ≤ 600 và y ≤ 500.
Một người mỗi ngày cần từ 400 đến 1 000 đơn vị vitamin cả A và B nên:
400 ≤ x + y ≤ 1000.
Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị vitamin B không ít hơn số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A nên:
.
Ta có hệ bất phương trình giữa x và y:
Biểu diễn miền nghiệm của hệ bất phương trình:
– Biểu diễn miền nghiệm D1 của bất phương trình x ≤ 600:
+ Vẽ đường thẳng d1: x = 600 trên mặt phẳng tọa độ Oxy.
+ Thay x = 0, y = 0 vào bất phương trình ta được 0 ≤ 600 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x ≤ 600.
Vậy miền nghiệm D1 của bất phương trình x ≤ 600 là nửa mặt phẳng bờ d1 (kể cả bờ d1) chứa điểm O.
* Tương tự ta biểu diễn các miền nghiệm:
– Miền nghiệm D2 của bất phương trình y ≤ 500: là nửa mặt phẳng bờ d2 (kể cả bờ d2: y = 500) chứa điểm O.
– Miền nghiệm D3 của bất phương trình x + y ≥ 400: là nửa mặt phẳng bờ d3 (kể cả bờ d3: x + y = 400) không chứa điểm O.
– Miền nghiệm D4 của bất phương trình x + y ≤ 1000: là nửa mặt phẳng bờ d4 (kể cả bờ d4: x + y = 1000) chứa điểm O.
– Miền nghiệm D5 của bất phương trình y ≥ x: là nửa mặt phẳng bờ d5 (kể cả bờ d5: ) chứa điểm M(0; 50).
– Miền nghiệm D6 của bất phương trình y ≤ 3x: là nửa mặt phẳng bờ d6 (kể cả bờ d6: y = 3x) không chứa điểm M (0; 50).
Ta có đồ thị sau:
Miền nghiệm của hệ bất phương trình là miền của đa giác ABCDEF với:
A(100; 300), B , C(500; 500), D(600, 400), E(600, 300), F
Số tiền trả cho x đơn vị vitamin A và y đơn vị vitamin B là: F (x; y) = 9x + 7,5y.
Để có số tiền phải trả là ít nhất thì F(x; y) phải nhỏ nhất.
Tại A(100; 300): F = 9.100 + 7,5. 300 = 3150;
Tại B : F = 9. + 7,5. 500 = 5250;
Tại C(500; 500): F = 9. 500 + 7,5. 500 = 8250;
Tại D(600, 400): F = 9. 600 + 7,5. 400 = 8400;
Tại E(600, 300): F = 9. 600 + 7,5. 300 = 7650;
Tại F : F = 9. + 7,5. = 3400;
Vậy F(x; y) nhỏ nhất là 3150 khi x =100 và y = 300.
Vậy mỗi người sẽ dùng 100 đơn vị vitamin A và 300 đơn vị vitamin B để đảm bảo các điều kiện số lượng sử dụng và chi phí phải trả là ít nhất.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?
Câu hỏi:
Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?
A. 3x + 4y – z + 1 > 0;
B. 2x – 2y – 1 > 0;
Đáp án chính xác
C. x2 + y < 3;
D. – x > 0.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Câu A: 3x + 4y – z + 1 > 0 là bất phương trình bậc nhất 3 ẩn x, y, z nên không là bất phương trình bậc nhất hai ẩn.
Câu B: 2x – 2y – 1 > 0 là bất phương trình bậc nhất hai ẩn có dạng ax + by + c > 0, a = 2, b = -2, c = -1.
Câu C: x2 + y < 3 là bất phương trình có chứa x2 nên không là bất phương trình bậc nhất hai ẩn.
Câu D: – x > 0 không là bất phương trình bậc nhất hai ẩn vì không có dạng ax + by + c > 0.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Câu hỏi:
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
A.
Đáp án chính xác
B.
C. 3y – 2x < 0
D.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
– Hệ bất phương trình là hệ bất phương trình bậc nhất hai ẩn vì có hai bất phương trình x +1 > 0 và y – 1 > x đều là bất phương trình bậc nhất hai ẩn.
– Hệ bất phương trình không là hệ bất phương trình bậc nhất hai ẩn vì có bất phương trình x2 + y2 < 0 không là bất phương trình bậc nhất hai ẩn.
– Bất phương trình 3y – 2x < 0 không là hệ bất phương trình bậc nhất hai ẩn vì chỉ có một bất phương trình bậc nhất hai ẩn.
– Hệ bất phương trình không là hệ bất phương trình bậc nhất hai ẩn vì bất phương trình 2x – y2 < 5 có chứa y2 nên không là bất phương trình bậc nhất hai ẩn.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Miền nghiệm của hệ bất phương trình không chứa điểm nào sau đây?
Câu hỏi:
Miền nghiệm của hệ bất phương trình không chứa điểm nào sau đây?
A. (1; 1);
Đáp án chính xác
B. (10; 3);
C. (3; 4);
D. (5; 1).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Câu A: Thay x = 1 và y = 1 vào bất phương trình x + 2y > 3 ta có: 1 + 2.1 = 3 > 3 là mệnh đề sai nên cặp số (x; y) = (1; 1) không là nghiệm của bất phương trình x + 2y > 3.
Vậy cặp (x; y) = (1; 1) không là nghiệm của hệ bất phương trình đã cho. Do đó A là đúng.
Câu B: Thay x = 10 và y = 3 vào bất phương trình x + 2y > 3 ta có: 10 + 2. 3 = 16 > 3 là mệnh đề đúng nên cặp số (x; y) = (10; 3) là nghiệm của bất phương trình x + 2y > 3.
Thay x = 10 và y = 3 vào bất phương trình x – 2y < 5 ta có: 10 – 2. 3 = 4 < 5 là mệnh đề đúng nên cặp số (x; y) = (10; 3) là nghiệm của bất phương trình x – 2y < 5.
Cặp (x; y) = (10; 3) là nghiệm của bất phương trình x + 2y > 3 và cũng là nghiệm của bất phương trình x – 2y < 5. Nên cặp (x; y) = (10; 3) là nghiệm của hệ bất phương trình đã cho. Do đó B là sai.
Tương tự câu A, ta chứng minh được cặp nghiệm (3; 4), (5; 1) là nghiệm của hệ bất phương trình đã cho. Do dó C và D là sai.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cặp số nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn: 2x + y – 1 < 0?
Câu hỏi:
Cặp số nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn: 2x + y – 1 < 0?
A. (x; y) = (2; 3);
B. (x; y) = (1; 2);
C. (x; y) = (0; 1);
D. (x; y) = (-1; 0).
Đáp án chính xác
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Thay x = 2, y = 3 vào bất phương trình 2x + y – 1 < 0 ta có: 2.2 + 3 – 1 = 6 < 0 là mệnh đề sai, nên (2; 3) không là nghiệm của bất phương trình đã cho.
Thay x = 1, y = 2 vào bất phương trình 2x + y – 1 < 0 ta có: 2. 1 + 2 – 1 = 3 < 0 là mệnh đề sai, nên (1; 2) không là nghiệm của bất phương trình đã cho.
Thay x = 0, y = 1 vào bất phương trình 2x + y – 1 < 0 ta có: 2. 0 + 1 – 1 = 0 < 0 là mệnh đề sai, nên (0; 1) không là nghiệm của bất phương trình đã cho.
Thay x = -1, y = 0 vào bất phương trình 2x + y – 1 < 0 ta có: 2. (-1) + 0 – 1 = -3 < 0 là mệnh đề đúng, nên (-1; 0) là nghiệm của bất phương trình đã cho.
Vậy ta chọn phương án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hệ bất phương trình x+5y>12x−4y
Câu hỏi:
Cho hệ bất phương trình . Hỏi khi cho y = 0, x có thể nhận mấy giá trị nguyên?
A. 0
B. 1
C. 2
D. 3
Đáp án chính xác
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Hệ bất phương trình là hệ bất phương trình bậc nhất hai ẩn.
Khi y = 0, hệ trở thành: ⇔ 1 < x < 5.
Mà x là số nguyên nên x có thể có các giá trị là {2; 3; 4}
Vậy có 3 giá trị nguyên nào của x thoả mãn hệ khi y = 0.====== **** mời các bạn xem câu tiếp bên dưới **** =====