Câu hỏi:
Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách xếp các cổ động viên thành một hàng dọc sao cho các cổ động viên cùng màu áo đứng cạnh nhau?
A. 345600;
B. 518400;
C. 725760;
D. 103680.
Đáp án chính xác
Trả lời:
Hướng dẫn giải.
Đáp án đúng là: D
Số cách xếp 3 cổ động viên mặc áo vàng là: 3! cách
Số cách xếp 4 cổ động viên mặc áo đỏ là: 4! cách
Số cách xếp 5 cổ động viên mặc áo xanh là: 5! cách
Hoán đổi vị trí của 3 nhóm cổ động viên có 3! cách
Vậy số cách xếp thỏa yêu cầu đề bài bằng 3!.3!.4!.5! = 103680 cách.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Câu hỏi:
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
A. \(C_7^3\);
Đáp án chính xác
B. \(A_7^3\);
C. \(\frac{{7!}}{{3!}}\);
D. 7.
Trả lời:
Đáp án đúng là: A
Ta chọn 3 phần tử bất kỳ trong 7 phần tử ta sẽ được một tập con có 3 phần tử của tập có 7 phần tử. Vậy mỗi cách chọn như vậy là là một tổ hợp chập 3 của 7 phần tử.
Số tập con là \(C_7^3\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có bao nhiêu cách xếp 8 người vào một bàn tròn
Câu hỏi:
Có bao nhiêu cách xếp 8 người vào một bàn tròn
A. 720;
B. 5040;
Đáp án chính xác
C. 40320;
D. 35280.
Trả lời:
Đáp án đúng là: B
Vì xếp vào bàn tròn nên vị trí xếp đầu tiên là như nhau nên có 1 cách xếp, ta xếp 7 người còn lại vào 7 vị trí nên có 7! Cách xếp
Vậy có 1.7! = 5040 cách xếp====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một tổ gồm 12 học sinh trong đó có bạn An. Hỏi có bao nhiêu cách chọn 4 em đi trực trong đó phải có An:
Câu hỏi:
Một tổ gồm 12 học sinh trong đó có bạn An. Hỏi có bao nhiêu cách chọn 4 em đi trực trong đó phải có An:
A. 990;
B. 495;
C. 220;
D. 165.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Chọn An có 1 cách chọn.
Chọn 3 bạn trong 11 bạn còn lại có \(C_{11}^3 = 165\) cách chọn.
Vậy có 1.165 = 165 cách chọn.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có bao nhiêu cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh?
Câu hỏi:
Có bao nhiêu cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh?
A. \(C_{10}^2\)+\(C_8^3\)+\(C_5^5\);
B. \(C_{10}^2\).\(C_{10}^3\).\(C_{10}^5\);
C. \(C_{10}^2\).\(C_8^3\).\(C_5^5\);
D. \(C_{10}^2\)+\(C_{10}^3\)+\(C_{10}^5\).
Đáp án chính xác
Trả lời:
Đáp án đúng là: C
Ta lập nhóm có 2 học sinh: ta chọn bất kỳ 2 học sinh trong 10 học sinh có \(C_{10}^2\) cách
Ta lập nhóm có 3 học sinh: vì chọn 2 học sinh để lập nhóm đầu tiên nên còn lại 8 học sinh, ta chọn 3 học sinh bất kì trong 8 học sinh có \(C_8^3\) cách
Ta lập nhóm có 5 học sinh: vì đã lập nhóm có 2 và 3 học sinh nên còn lại 5 học sinh, ta chọn 5 học sinh để lập thành nhóm có \(C_5^5\) cách
Vậy có \(C_{10}^2\).\(C_8^3\).\(C_5^5\) cách====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) được tạo thành từ 10 điểm phân biệt khác nhau
Câu hỏi:
Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) được tạo thành từ 10 điểm phân biệt khác nhau
A. 45;
B. 90;
Đáp án chính xác
C. 35;
D. 55.
Trả lời:
Đáp án đúng là: B
Giả sử ta có 2 điểm A, B phân biệt thì có hai vectơ là vectơ \(\overrightarrow {AB} \) và vectơ \(\overrightarrow {BA} \)
Vì cứ chọn 2 điểm bất kỳ trong 10 điểm ta được hai vectơ nên mỗi cách chọn ra 2 điểm trong 10 điểm là một tổ hợp chập 2 của 10 phần tử. Hay số vectơ được tạo thành từ 10 điểm phân biệt là chỉnh hợp chập 2 của 10. Vậy số vectơ được tạo thành từ 10 điểm phân biệt khác nhau là 2.\(C_{10}^2\) = \(A_{10}^2\) = 90 (vectơ).====== **** mời các bạn xem câu tiếp bên dưới **** =====