Trắc nghiệm Toán 7 Bài 4: Phép nhân đa thức một biến
Câu 1. Tìm hệ số cao nhất của đa thức P(x) = (2x – 1)(3x2 – 7x + 5).
A. –5;
B. 17;
C. –17;
D. 6.
Hướng dẫn giải
Đáp án đúng là: D
Ta có (2x – 1)(3x2 – 7x + 5)
= 2x.3x2 + 2x.(–7x) + 2x.5 – 1.3x2 – 1.(–7x) – 1.5
= 6x3 – 14x2 + 10x – 3x2 + 7x – 5
= 6x3 – 17x2 + 17x – 5
Vậy hệ số cao nhất của P(x) là 6.
Câu 2. Rút gọn và tính giá trị của biểu thức: P(x) = 5x2 – [4x2 – 3x(x – 2)] với x = 2.
A. P(x) = 4x2 – 6x; P(2) = 2;
B. P(x) = 4x2 + 6x; P(2) = 4;
C. P(x) = 4x2 – 6x; P(2) = 4;
D. P(x) = 4x2 + 6x; P(2) = 4;
Hướng dẫn giải
Đáp án đúng là: C
Ta có P(x) = 5x2 – [4x2 – 3x(x – 2)]
= 5x2 – (4x2 – 3x2 + 6x)
= 5x2 – (x2 + 6x)
= 5x2 – x2 – 6x
= 4x2 – 6x
Thay x = 2 vào P(x) = 4x2 – 6x ta được:
P(2) = 4. 22 – 6. 2
= 4.4 – 6. 2
= 16 – 12
= 4.
Vậy ta chọn phương án C.
Câu 3. Biết 5(2x − 1) − 4(8 − 3x) = 84. Giá trị của x là:
A. x = 4;
B. x = 4,5;
C. x = 5;
D. x = 5,5.
Hướng dẫn giải
Đáp án đúng là: D
Ta có: 5(2x − 1) − 4(8 − 3x) = 84
Suy ra 10x − 5 − 32 + 12x = 84
10x + 12x = 84 + 5 + 32
22x = 121
x = 5,5
Vậy x = 5,5.
Ta chọn phương án D.
Câu 4. Cho hình chữ nhật có chiều dài lớn hơn chiều rộng là 5 đơn vị. Biểu thức tính diện tích hình chữ nhật là:
A. S = x2 + 5x;
B. S = 2(x2 + 5x);
C. S = 2x + 5;
D. S = x2 – 5x.
Hướng dẫn giải
Đáp án đúng là: A
Gọi x (x > 0) là chiều rộng của hình chữ nhật
Theo giả thiết ta có chiều dài hình chữ nhật là x + 5
Diện tích hình chữ nhật là:
S = x(x + 5) = x2 + 5x (đvdt)
Ta chọn phương án A.
Câu 5. Cho biểu thức P(x) = x2(x2 + x + 1) – 3x(x – a) + 4. Tìm a sao cho tổng các hệ số của đa thức bằng –2.
A. –1;
B. 1;
C. –2;
D. 2.
Hướng dẫn giải
Đáp án đúng là: C
P(x) = x2(x2 + x + 1) – 3x(x – a) + 4
= x4 + x3 + x2 – 3x2 + 3ax + 4
= x4 + x3 – 2x2 + 3ax + 4
Ta có:
Hệ số của lũy thừa bậc 4 của x là 1;
Hệ số của lũy thừa bậc 3 của x là 1;
Hệ số của lũy thừa bậc 2 của x là –2;
Hệ số của lũy thừa bậc 1 của x là 3a;
Hệ số tự do là 4;
Tổng các hệ số của đa thức P(x) là:
1 + 1 + (–2) + 3a + 4 = 3a + 4
Do tổng các hệ số của đa thức P(x) bằng –2 nên ta có:
3a + 4 = –2
Suy ra 3a = –6
Do đó a = –2
Ta chọn phương án C.
Câu 6. Với a ≠ 0; b ≠ 0; m, n ∈ ℕ; kết quả của phép tính axm. bxn bằng:
A. abxm + n;
B. abxm – n;
C. (a – b)xm;
D. (a + b)xm;
Hướng dẫn giải
Đáp án đúng là: A
Ta có: axm. bxn
= a.b.xm.xn
= abxm + n (a ≠ 0; b ≠ 0; m, n ∈ ℕ)
Vậy ta chọn phương án A.
Câu 7. Tính 2x3. 5x4 ta thu được kết quả là:
A. 10x4;
B. 10x3;
C. 10x7;
D. 10x12.
Hướng dẫn giải
Đáp án đúng là: C
Ta có: 2x3. 5x4
= 2. 5. x3. x4
= 10x3+4
= 10x7.
Vậy ta chọn phương án C.
Câu 8. Tính –4xm. 3xn + 1 (với m, n ∈ ℕ)ta thu được kết quả là:
A. –12xm + n + 1;
B. 12xm + n + 1;
C. 12xm.(n + 1);
D. –12xm.(n + 1).
Hướng dẫn giải
Đáp án đúng là: A
Ta có: –4xm. 3xn + 1 (với m, n ∈ ℕ)
= (–4). 3. xm. xn + 1
= –12xm + n + 1.
Vậy ta chọn phương án A.
Câu 9. Tích 2x(x + 1) có kết quả bằng:
A. 2x2 + 2x;
B. 2x2 – 2x;
C. 2x + 2;
D. 2x2 – 2.
Hướng dẫn giải
Đáp án đúng là: A
Ta có: 2x(x + 1)
= 2x.x + 2x.1
= 2x2 + 2x.
Vậy ta chọn phương án A.
Câu 10. Chọn câu đúng.
A. (x – 1)(x2 + x + 1) = x3 – 1;
B. (x – 1)(x + 1) = 1 – x2;
C. (x + 1)(x – 1) = x2 + 1;
D. (x2 + x + 1)(x – 1) = 1 – x2.
Hướng dẫn giải
Đáp án đúng là: A
Ta có:
• (x – 1)(x + 1)
= x.x + x – x – 1
= x2 – 1
Do đó phương án B sai, C sai
• (x – 1)(x2 + x + 1)
= x.x2 + x.x + x.1 + (– 1).x2 + (–1). x + (– 1).1
= x3 + x2 + x – x2 – x – 1
= x3 – 1
Do đó phương án A đúng và D sai.
Vậy ta chọn phương án A.
Câu 11. Giả sử 3 kích thước của một hình hộp chữ nhật là x; x + 1; x – 1 (cm) với x > 1. Thể tích hình hộp chữ nhật này là:
A. x3 + x (cm3);
B. x3 – x (cm3);
C. x2 + x (cm3);
D. x2 – x (cm3);
Hướng dẫn giải
Đáp án đúng là: B
Thể tích hình hộp chữ nhật:
V = x(x + 1)(x – 1)
= (x2 + x)(x – 1)
= x2.x – x2.1 + x.x – x.1
= x3 – x
Vậy thể tích hình hộp chữ nhật là: V = x3 – x (cm3).
Câu 12. Cho hai hình chữ nhật như hình vẽ.
Đa thức theo biến x biểu thị diện tích của phần được tô màu xanh là:
A. 5x2 + 17x + 8 ;
B. 5x2 + 9x + 2 ;
C. 5x2 + 17x – 2 ;
D. 5x2 – 9x – 2 .
Hướng dẫn giải
Đáp án đúng là: B
Diện tích hình chữ nhật lớn là:
(3x + 5)(2x + 1)
= 3x.2x + 3x.1 + 5.2x + 5.1
= 6x2 + 3x + 10x + 5
= 6x2 + 13x + 5 (đvdt)
Diện tích hình chữ nhật nhỏ màu trắng bên trong là:
(x + 3)(x + 1)
= x.x + x.1 + 3.x + 3.1
= x2 + x + 3x + 3
= x2 + 4x + 3 (đvdt)
Diện tích phần được tô màu xanh là:
(6x2 + 13x + 5) – (x2 + 4x + 3)
= 6x2 + 13x + 5 – x2 – 4x – 3
= (6x2 – x2) + (13x – 4x) + (5 – 3)
= 5x2 + 9x + 2 (đvdt)
Vậy ta chọn phương án B.
Câu 13. Cho B = (m – 1)(m + 6) – (m + 1)(m – 6). Chọn kết luận đúng.
A. B ⁝ 10 với mọi m ∈ ℤ;
B. B ⁝ 15 với mọi m ∈ ℤ;
C. B ⁝ 9 với mọi m ∈ℤ;
D. B ⁝ 20 với mọi m ∈ ℤ.
Hướng dẫn giải
Đáp án đúng là: A
Ta có B = (m – 1)(m + 6) – (m + 1)(m – 6)
= m.m + m.6 – (1.m + 1.6) – (m.m – m.6 + 1.m – 1.6)
= m2 + 6m – m – 6 – (m2 – 6m + m – 6)
= m2 + 5m – 6 – m2 + 6m – m + 6
= (m2 – m2) + (5m + 6m – m) + (–6 + 6)
= 10m
Nhận thấy 10 ⁝ 10
Do đó 10.m ⁝ 10
Nên B ⁝ 10 với mọi giá trị nguyên của m.
Ta chọn phương án A.
Câu 14. Cho A = (3x + 7)(2x + 3) – (3x – 5)(2x + 11)
Và B = x(2x + 1) – x2(x + 2) + x3 – x + 3.
Chọn khẳng định đúng trong các khẳng định sau:
A. A = B;
B. A = 25B;
C. A = 25B + 1;
D. A = 2B.
Hướng dẫn giải
Đáp án đúng là: C
A = (3x + 7)(2x + 3) – (3x – 5)(2x + 11)
= 3x.2x + 3x.3 + 7.2x + 7.3 – (3x.2x + 3x.11 – 5.2x – 5.11)
= 6x2 + 9x + 14x + 21 – (6x2 + 33x – 10x – 55)
= 6x2 + 23x + 21 – 6x2 – 33x + 10x + 55
= (6x2 – 6x2) + (23x – 33x + 10x) + (21 + 55)
= 76
B = x(2x + 1) – x2(x + 2) + x3 – x + 3
= x.2x + x – (x2.x + 2x2) + x3 – x + 3
= 2x2 + x – x3 – 2x2 + x3 – x + 3
= (–x3 + x3) + (2x2 – 2x2) + (x – x) + 3
= 3
Từ đó ta có A = 76; B = 3
Mà 76 = 25.3 + 1 nên A = 25B + 1.
Ta chọn phương án C.
Câu 15. Tính tổng các hệ số của lũy thừa bậc ba, lũy thừa bậc hai và lũy thừa bậc nhất trong kết quả của phép nhân (x2 + x + 1)(x3 – 2x + 1) ta được kết quả:
A. 1;
B. –2;
C. –3;
D. 3.
Hướng dẫn giải
Đáp án đúng là: C
Ta có (x2 + x + 1)(x3 – 2x + 1)
= x2.x3 + x2.(–2x) + x2.1 + x.x3 + x.(–2x) + x.1 + 1.x3 + 1.(–2x) + 1.1
= x5 – 2x3 + x2 + x4 – 2x2 + x + x3 – 2x + 1
= x5 + x4 + (–2x3 + x3) + (x2 – 2x2) + (x – 2x) + 1
= x5 + x4 – x3 – x2 – x + 1
Hệ số của lũy thừa bậc ba là – 1
Hệ số của lũy thừa bậc hai là – 1
Hệ số của lũy thừa bậc nhất là – 1
Tổng các hệ số này là –1 +(–1) + (–1) = –3.
Vậy ta chọn phương án C.
Xem thêm các bài trắc nghiệm Toán 7 Cánh diều hay, chi tiết khác:
Trắc nghiệm Toán 7 Bài 3: Phép cộng, phép trừ đa thức một biến
Trắc nghiệm Toán 7 Bài 4: Phép nhân đa thức một biến
Trắc nghiệm Toán 7 Bài 5: Phép chia đa thức một biến
Trắc nghiệm Ôn tập chương 6
Trắc nghiệm Toán 7 Bài 1: Tổng các góc của một tam giác