b) Hình bình hành ABCD phải thỏa mãn điều kiện gì để tứ giác AHCK là:
– một hình thoi?
– một hình chữ nhật?
– một hình vuông?
Lời giải:
a) Vì O là giao điểm của hai đường chéo AC và BD nên O là trung điểm của AC và BD.
Ta có H là trung điểm của BO suy ra HB = HO = 12OB;
K là trung điểm của OD nên OK = KD = 12OD.
Mà OB = OD (O là trung điểm của BD) nên OK = OH, suy ra O là trung điểm của HK.
Tứ giác AHCK có O là trung điểm của hai đường chéo AC và HK.
Suy ra tứ giác AHCK là hình bình hành.
b)
+ Muốn tứ giác AHCK là hình thoi ta cần thêm điều kiện hai đường chéo AC và HK vuông góc với nhau, cũng có nghĩa là hai đường chéo của hình bình hành ABCD vuông góc với nhau, vậy để tứ giác AHCK là hình thoi thì tứ giác ABCD là hình thoi.
+ Muốn tứ giác AHCK là hình chữ nhật, ta cần thêm điều kiện hai đường chéo AC và HK bằng nhau, cũng có nghĩa là đường chéo AC của hình bình hành ABCD bằng nửa đường chéo BD (Do H, K lần lượt là trung điểm của OB và OD).
Vậy để tứ giác AHCK là hình chữ nhật điều kiện là: ABCD có đường chéo BD dài gấp hai lần đường chéo AC.
+ Tứ giác AHCK là hình vuông khi nó vừa là hình thoi, vừa là hình chữ nhật. Muốn vậy, thêm kết quả hai câu trên, tứ giác ABCD thỏa mãn điều kiện vừa là hình thoi và vừa có đường chéo BD dài gấp hai lần đường chéo AC.
Bài 9 trang 136 Toán 8 Tập 2: Cho tam giác ABC. Các đường trung tuyến AF, BE và CD cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của BG và CG.
a) Chứng minh rằng tứ giác DEKI là hình bình hành.
b) Biết AF = 6 cm. Tính độ dài các đoạn thẳng DI và EK.
Lời giải:
a) Xét tam giác ABC có:
CD là đường trung tuyến của tam giác ABC nên D là trung điểm của AB
BE là đường trung tuyến của tam giác ABC nên E là trung điểm của AC
Do đó, DE là đường trung bình của tam giác ABC.