Câu hỏi:
Cho hình thang ABCD (AB//CD) với AB = a, BC = b, CD = c và DA = d. Các tia phân giác của góc A và góc D cắt nhau tại E, các tia phân giác của và cắt nhau tại F. Gọi M, N theo thứ tự là trung điểm của AD và BC.a) Chứng minh M, E, N, F cùng nằm trên một đường thẳng.b) Tính độ dài MN, MF, FN theo a, b, c, d.
Trả lời:
a) Gọi P và Q lần lượt là giao điểm của AE, AF với CD.Chứng minh tương tự 2B.b) Ta có: Lại có:c = CD = CQ + QD = BC + QD = b + QD (do tam giác BCQ cân) Þ QD = c – b.Trong hình thang ABQD có M là trung điểm của AD và MF//DQ nên chứng minh được F là trung điểm của BQ, từ đó chứng minh MF là đường trung bình của hình thang ABQD. Vì MF là đường trung bình của hình thang ABQD.Þ Mặt khác, FN là đường trung bình của tam giác BCQ, tức là
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho Δ ABC có M là trung điểm của AB, N là trung điểm của AC và BC = 4( cm ). Tính độ dài MN.
Câu hỏi:
Cho Δ ABC có M là trung điểm của AB, N là trung điểm của AC và BC = 4( cm ). Tính độ dài MN.
Trả lời:
Theo giả thiết ta có M là trung điểm của AB, N là trung điểm của AC⇒ MN là đường trung bình của Δ ABC.Áp dụng định lý 2, ta có MN = 1/2BC.⇒ MN = 1/2BC = 1/2.4 = 2( cm )
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình thang ABCD có E là trung điểm của AD, F là trung điểm của BC và AB = 4( cm ) và CD = 7( cm ). Tính độ dài đoạn EF.
Câu hỏi:
Cho hình thang ABCD có E là trung điểm của AD, F là trung điểm của BC và AB = 4( cm ) và CD = 7( cm ). Tính độ dài đoạn EF.
Trả lời:
Ta có hình thang ABCD có E là trung điểm của AD, F là trung điểm của BC⇒ EF là đường trung bình của hình thang.Áp dụng định lý 2, ta có EF = (AB + CD)/2⇒ EF = (AB + CD)/2 = (4 + 7)/2 = 5,5( cm ).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC( AB > AC ) có A^=500. Trên cạnh AB lấy điểm D sao cho BD = AC. Gọi E,F lần lượt là trung điểm của cạnh AD,BC. Tính BEF ^= ?
Câu hỏi:
Cho tam giác ABC( AB > AC ) có . Trên cạnh AB lấy điểm D sao cho BD = AC. Gọi E,F lần lượt là trung điểm của cạnh AD,BC. Tính ?
Trả lời:
Do E,F lần lượt là trung điểm của cạnh AD,BC theo giả thiết nên ta vẽ thêm I là trung điểm của CD nên EI, FI theo thứ tự lần lượt là đường trung bình của tam giác ACD và BCD.Đặt BD = AC = 2aÁp dụng định lý đường trung bình của hai tam giác trên ta có:( 1 ) FI//BD ( 2 ) FI = a( 3 ) EI = a ( 4 ) EI//AC
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình thang ABCD ( AB//CD ) có AB = 2cm,CD = 5cm,AD = 7cm. Gọi E là trung điểm của BC. Tính AED^= ?
Câu hỏi:
Cho hình thang ABCD ( AB//CD ) có AB = 2cm,CD = 5cm,AD = 7cm. Gọi E là trung điểm của BC. Tính
Trả lời:
Ta có EI là đường trung bình của hình thang ABCD.Áp dụng định lý đường trung bình của hình thang ABCD ta có:IE = (AB + CD)/2 = (2 + 5)/2 = 3,5( cm ) ( 2 )Từ ( 1 ) và ( 2 ) ta có (vì trong tam giác, đối diện với hai cạn bằng nhau là hai góc bằng nhau)+ Xét tam giác ADE có
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC cân tại A, có M là trung điểm của BC. Kẻ tia Mx song song với AC cắt AB tại E và tia My song song với AB cắt AC tại F. Chứng minh:a) EF là đường trung bình của tam giác ABC;b) AM là đường trung trực của EF.
Câu hỏi:
Cho tam giác ABC cân tại A, có M là trung điểm của BC. Kẻ tia Mx song song với AC cắt AB tại E và tia My song song với AB cắt AC tại F. Chứng minh:a) EF là đường trung bình của tam giác ABC;b) AM là đường trung trực của EF.
Trả lời:
a) Mx đi qua trung điểm M của BC và song song với AC. Suy ra Mx đi qua trung điểm E của AB (theo Định lí 1).Tương tự, ta được F cũng là trung điểm của AC. Khi đó EF trở thành đường trung bình của tam giác ABC;b) Do ME và MF cũng là đường trung bình nên có ME = MF = AE = AF. Suy ra AM là đường trung trực của EF.
====== **** mời các bạn xem câu tiếp bên dưới **** =====