Câu hỏi:
Cho tam giác ABC có chu vi là 32 cm. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. Chu vi của tam giác MNP là
A. 8 cm.
B. 64 cm.
C. 30 cm.
D. 16 cm.
Trả lời:
Đáp án đúng là: D
• Vì M, N lần lượt là trung điểm của các cạnh AB, AC nên MN là đường trung bình của tam giác ABC suy ra .
• Vì N, P lần lượt là trung điểm của các cạnh AC, BC nên NP là đường trung bình của tam giác ABC suy ra .
• Vì M, P lần lượt là trung điểm của các cạnh AB, BC nên NP là đường trung bình của tam giác ABC suy ra .
Chu vi tam giác ABC bằng: AB + BC + CA = 32 (cm).
Chu vi tam giác MNP bằng:
(cm)
Vậy chu vi tam giác MNP bằng 16 cm.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Độ dài x trong Hình 4.31 bằng
A. 2,75
B. 2.
C. 2,25.
D. 3,75.
Câu hỏi:
Độ dài x trong Hình 4.31 bằng
A. 2,75
B. 2.
C. 2,25.
D. 3,75.Trả lời:
Đáp án đúng là: C
Trong Hình 4.31 có mà hai góc này ở vị trí đồng vị nên MN // BC.
Áp dụng định lí Thalès vào tam giác ABC, ta có:
hay .
Suy ra .
Vậy x = 2,25.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC. Gọi H, K lần lượt là trung điểm của AC, BC. Biết HK = 3,5 cm. Độ dài AB bằng
A. 3,5 cm.
B. 7 cm.
C. 10 cm.
D. 15 cm.
Câu hỏi:
Cho tam giác ABC. Gọi H, K lần lượt là trung điểm của AC, BC. Biết HK = 3,5 cm. Độ dài AB bằng
A. 3,5 cm.
B. 7 cm.
C. 10 cm.
D. 15 cm.Trả lời:
Đáp án đúng là: B
Vì H, K lần lượt là trung điểm của AC, BC nên HK là đường trung bình của tam giác ABC suy ra .
Do đó AB = 2HK = 2 . 3,5 = 7 (cm).
Vậy AB = 7 cm.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có AB = 9 cm, D là điểm thuộc cạnh AB sao cho AD = 6 cm. Kẻ DE song song với BC (E thuộc AC), kẻ EF song song với CD (F thuộc AB). Độ dài AF bằng
A. 4 cm.
B. 5 cm.
C. 6 cm.
D. 7 cm.
Câu hỏi:
Cho tam giác ABC có AB = 9 cm, D là điểm thuộc cạnh AB sao cho AD = 6 cm. Kẻ DE song song với BC (E thuộc AC), kẻ EF song song với CD (F thuộc AB). Độ dài AF bằng
A. 4 cm.
B. 5 cm.
C. 6 cm.
D. 7 cm.Trả lời:
Đáp án đúng là: A
Áp dụng định lí Thalès:
• Với DE // BC (E ∈ AC) ta có: ;
• Với EF // CD (F ∈ AB) ta có: .
Suy ra (cm).
Vậy AF = 4 cm.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC cân tại A có AB = 15 cm, BC = 10 cm, đường phân giác trong của góc B cắt AC tại D. Khi đó, đoạn thẳng AD có độ dài là
A. 3 cm.
B. 6 cm.
C. 9 cm.
D. 12 cm.
Câu hỏi:
Cho tam giác ABC cân tại A có AB = 15 cm, BC = 10 cm, đường phân giác trong của góc B cắt AC tại D. Khi đó, đoạn thẳng AD có độ dài là
A. 3 cm.
B. 6 cm.
C. 9 cm.
D. 12 cm.Trả lời:
Đáp án đúng là: C
Vì tam giác ABC cân tại A nên AB = AC = 15 cm.
Theo đề bài, BD là tia phân giác của , áp dụng tính chất đường phân giác vào tam giác ABC, ta có:
suy ra .
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
.
Do đó AD = 3 . 3 = 9 (cm).
Vậy AD = 9 cm.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho góc xOy. Trên tia Ox, lấy hai điểm A và B sao cho OA = 2 cm, OB = 5 cm. Trên tia Oy, lấy điểm C sao cho OC = 3 cm. Từ điểm B kẻ đường thẳng song song với AC cắt Oy tại D. Tính độ dài đoạn thẳng CD.
Câu hỏi:
Cho góc xOy. Trên tia Ox, lấy hai điểm A và B sao cho OA = 2 cm, OB = 5 cm. Trên tia Oy, lấy điểm C sao cho OC = 3 cm. Từ điểm B kẻ đường thẳng song song với AC cắt Oy tại D. Tính độ dài đoạn thẳng CD.
Trả lời:
Từ điểm B kẻ đường thẳng song song với AC cắt Oy tại D hay AC // BD.
Áp dụng định lí Thalès vào tam giác OBD, ta có:
hay .
Suy ra (cm)
Ta có OD = OC + CD suy ra CD = OD – OC = 7,5 – 3 = 4,5 (cm).
Vậy CD = 4,5 cm.====== **** mời các bạn xem câu tiếp bên dưới **** =====