Câu hỏi:
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f\left( 2 \right) = – \frac{1}{3}\) và \(f’\left( x \right) = x{\left[ {f\left( x \right)} \right]^2}\) với mọi \(x \in \mathbb{R}\). Giá trị \(f\left( 1 \right)\) bằng
A. \(f\left( 1 \right) = \frac{2}{3}.\)
B. \(f\left( 1 \right) = \frac{3}{2}.\)
C. \(f\left( 1 \right) = – \frac{2}{3}.\)
Đáp án chính xác
D. \(f\left( 1 \right) = \frac{1}{3}.\)
Trả lời:
Hướng dẫn giải
Từ \(f’\left( x \right) = x{\left[ {f\left( x \right)} \right]^2}\) (1), suy ra \(f’\left( x \right) \ge 0\) với mọi \(x \in \left[ {1;2} \right]\).
Suy ra \(f\left( x \right)\) là hàm không giảm trên đoạn \(\left[ {1;2} \right]\) nên \(f\left( x \right) \le f\left( 2 \right) < 0\), \(\forall x \in \left[ {1;2} \right]\).
Chia 2 vế hệ thức (1) cho \({\left[ {f\left( x \right)} \right]^2}\) ta được \(\frac{{f’\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}} = x,\forall x \in \left[ {1;2} \right].\) (2)
Lấy tích phân 2 vế trên đoạn \(\left[ {1;2} \right]\) hệ thức (2), ta được
\(\int\limits_1^2 {\frac{{f’\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}}dx = \int\limits_1^2 {xdx \Leftrightarrow } \left[ {\frac{{ – 1}}{{f\left( x \right)}}} \right]\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. = \left( {\frac{{{x^2}}}{2}} \right)\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. \Leftrightarrow \frac{1}{{f\left( 1 \right)}} – \frac{1}{{f\left( 2 \right)}} = \frac{3}{2}.} \)
Do \(f\left( 2 \right) = – \frac{1}{3}\) nên suy ra \(f\left( 1 \right) = – \frac{2}{3}.\)
Chọn C.
====== **** mời các bạn xem câu tiếp bên dưới **** =====