Câu hỏi:
Cho hình chữ nhật ABCD có AB = 12cm, BC = 5cm. Chứng minh rằng bốn điểm A, B, C, D thuộc cùng một đường tròn. Tính bán kính của đường tròn đó.
Trả lời:
Gọi O là giao điểm của hai đường chéo AC và BD.Ta có OA = OB = OC = OD (tính chất) nên bốn điểm A, B, C, D thuộc cùng một đường tròn (tâm O, bán kính OA)Theo định lí Pitago trong tam giác vuông ABC có:Nên bán kính đường tròn là OA = 13 : 2 = 6.5 cm
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trên hình 53, điểm H nằm bên ngoài đường tròn (O), điểm K nằm bên trong đường tròn (O). Hãy so sánh (OKH) ̂ và (OHK) ̂.
Câu hỏi:
Trên hình 53, điểm H nằm bên ngoài đường tròn (O), điểm K nằm bên trong đường tròn (O). Hãy so sánh (OKH) ̂ và (OHK) ̂.
Trả lời:
Ta có: OH > R > OK⇒ ∠(OKH) > ∠(OHK)(Góc đối diện với cạnh lớn hơn thì lớn hơn)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hai điểm A và B.a) Hãy vẽ một đường tròn đi qua hai điểm đó.b) Có bao nhiêu đường tròn như vậy ? Tâm của chúng nằm trên đường nào ?
Câu hỏi:
Cho hai điểm A và B.a) Hãy vẽ một đường tròn đi qua hai điểm đó.b) Có bao nhiêu đường tròn như vậy ? Tâm của chúng nằm trên đường nào ?
Trả lời:
a)b) Có vô số đường tròn đi qua hai điểm. Tâm của chúng nằm trên đường trung trực của đoạn thẳng đó
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho ba điểm A, B, C không thẳng hàng. Hãy vẽ đường tròn đi qua ba điểm đó.
Câu hỏi:
Cho ba điểm A, B, C không thẳng hàng. Hãy vẽ đường tròn đi qua ba điểm đó.
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho đường tròn (O), A là một điểm bất kì thuộc đường tròn. Vẽ A’ đối xứng với A qua O (h.56). Chứng minh rằng điểm A’ cũng thuộc đường tròn (O).
Câu hỏi:
Cho đường tròn (O), A là một điểm bất kì thuộc đường tròn. Vẽ A’ đối xứng với A qua O (h.56). Chứng minh rằng điểm A’ cũng thuộc đường tròn (O).
Trả lời:
Do A’ đối xứng với A qua O nên O là trung điểm của AA’ ⇒ OA = OA’ = R⇒ A’ cũng thuộc đường tròn (O)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho đường tròn (O), AB là một đường kính bất kì và C là một điểm thuộc đường tròn. Vẽ C’ đối xứng với điểm C qua AB (h.57). Chứng minh rằng điểm C’ cũng thuộc đường tròn (O).
Câu hỏi:
Cho đường tròn (O), AB là một đường kính bất kì và C là một điểm thuộc đường tròn. Vẽ C’ đối xứng với điểm C qua AB (h.57). Chứng minh rằng điểm C’ cũng thuộc đường tròn (O).
Trả lời:
Do C và C’ đối xứng nhau qua AB nên AB là đường trung trực của CC’⇒ O nằm trên đường trung trực của CC’⇒ OC = OC’ = R⇒ C’ cũng thuộc đường tròn (O)
====== **** mời các bạn xem câu tiếp bên dưới **** =====