Câu hỏi:
Đố
Vào khoảng năm 200 trước Công Nguyên, Ơratôxten, một nhà toán học và thiên văn học Hi Lạp, đã ước lượng được “chu vi” của Trái Đất (chu vi đường Xích Đạo) nhờ hai quan sát sau:
1) Một ngày trong năm, ông ta để ý thấy Mặt Trời chiếu thẳng các đáy giếng ở thành phố Xy-en (nay gọi là At-xu-an), tức là tia sáng chiếu thẳng đứng.
2) Cùng lúc đó ở thành phố A-lếch-xăng-đri-a cách Xy-en 800km, một tháp cao 25m có bóng trên mặt đất dài 3,1m.
Từ hai quan sát trên, em hãy tính xấp xỉ “chu vi” của Trái Đất.
(Trên hình 51 điểm S tượng trưng cho thành phố Xy-en, điểm A tượng trưng cho thành phố A-lếch-xăng-đri-a, bóng của tháp trên mặt đất được coi là đoạn thẳng AB).
Hình 51
Trả lời:
Gọi c là chu vi Trái đất, góc ∠AOS = α. Ta có:
Vì các tia sáng chiếu thẳng đứng nên BC // SO do đó:
∠AOS = ∠ACB (so le trong)
Trong tam giác ABC vuông tại A có:
Vì ∠AOS = ∠ACB nên α = 7,07o
Vậy chu vi Trái đất là:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABGD để EFGH là: Hình chữ nhật
Câu hỏi:
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABGD để EFGH là: Hình chữ nhật
Trả lời:
* Ta có EF là đường trung bình của ABCSuy ra: EF //AC và EF = 1/2 AC (1)* Trong ADC có HG là đường trung bìnhSuy ra: HG // AC và HG = 1/2 AC (2)Từ (l) và (2) suy ra EF // HG và EF = HGVậy tứ giác EFGH là hình bình hành.Tứ giác EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AC ⊥ BD
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABGD để EFGH là: Hình thoi
Câu hỏi:
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABGD để EFGH là: Hình thoi
Trả lời:
* Ta có EF là đường trung bình của ABCSuy ra: EF //AC và EF = 1/2 AC (1)* Trong ADC có HG là đường trung bìnhSuy ra: HG // AC và HG = 1/2 AC (2)Từ (l) và (2) suy ra EF // HG và EF = HGVậy tứ giác EFGH là hình bình hành.Tứ giác EFGH là hình thoi ⇔ EH = EF ⇔ AC = BD
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABGD để EFGH là: Hình vuông
Câu hỏi:
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABGD để EFGH là: Hình vuông
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC. Tứ giác AEDF là hình gì? Vì sao?
Câu hỏi:
Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC. Tứ giác AEDF là hình gì? Vì sao?
Trả lời:
Điểm M và điểm D đối xứng qua trục ABSuy ra AB là đường trung trực của đoạn thẳng MD⇒ AB ⊥ DM ⇒ (AED) = Điểm D và điểm N đối xứng qua trục AC ⇒ AC là đường trung trực của đoạn thẳng DN ⇒ AC ⊥ DN ⇒ (AFD) = Mà (EAF) = (gt). Vậy tứ giác AEDF là hình chữ nhật (vì có 3 góc vuông).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC. Các tứ giác ADBM, ADCN
Câu hỏi:
Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC. Các tứ giác ADBM, ADCN
Trả lời:
Tứ giác AEDF là hình chữ nhật⇒ DE // AC; DF // ABTrong ABC, ta có: DB = DC (gt)Mà DE // ACSuy ra: AE = EB (tính chất đường trung bình của tam giác)Lại có: DF // AB và DB = DCSuy ra: AF = FC (tính chất đường trung bình của tam giác)Xét tứ giác ADBM, ta có: AE = EB (chứng minh trên)ED = EM (vì AB là trung trực DM)Suy ra tứ giác ADBM là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)Mặt khác: AB ⊥ DMVậy hình bình hành ADBM là hình thoi (vì có hai đường chéo vuông góc)Xét tứ giác ADCN, ta có: AF = FC (chứng minh trên)DF = FN (vì AC là đường trung trực DN)Suy ra tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).Lại có: AC ⊥ DNVậy hình bình hành ADCN là hình thoi (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
====== **** mời các bạn xem câu tiếp bên dưới **** =====