Câu hỏi:
Một tổ có 8 học sinh gồm 4 nữ và 4 nam. Có bao nhiêu cách xếp các học sinh trong tổ:
Thành một hàng dọc sao cho nam, nữ đứng xen kẽ nhau?
Trả lời:
Lời giải
Giả sử các học sinh trong tổ được đánh số thứ tự từ 1 đến 8. Vì số học sinh nam và số học sinh nữ bằng nhau nên có hai trường hợp sau:
Trường hợp 1: Học sinh nam đứng đầu hàng.
Khi đó các học sinh nam có số thứ tự là số lẻ, còn các học sinh nữ có số thứ tự là số chẵn.
Như vậy, thứ tự của các học sinh nam và các học sinh nữ được cố định, chỉ thay đổi thứ tự giữa các học sinh nam, hoặc giữa các học sinh nữ.
Sắp xếp 4 học sinh nam thì có 4! (cách xếp).
Sắp xếp 4 học sinh nữ thì có 4! (cách xếp).
Khi đó, số cách xếp thứ tự các học sinh trong tổ trong trường hợp học sinh nam đứng đầu hàng là: 4!.4! = 576 (cách xếp).
Trường hợp 2: Học sinh nữ đứng đầu hàng.
Tương tự như trường hợp 1, số cách xếp thứ tự các học sinh trong tổ trong trường hợp học sinh nữ đứng đầu hàng là: 4!.4! = 576 (cách xếp).
Vậy số cách xếp thứ tự các học sinh trong tổ sao cho nam, nữ đứng xen kẽ nhau là:
576 + 576 = 1152 (cách xếp).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tập hợp A gồm n phần tử (n ∈ ℕ*). Mỗi hoán vị của n phần tử đó là:
A. Một kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A.
B. Tất cả kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A.
C. Một số được tính bằng n(n – 1). … .2.1.
D. Một số được tính bằng n!.
Câu hỏi:
Cho tập hợp A gồm n phần tử (n ∈ ℕ*). Mỗi hoán vị của n phần tử đó là:
A. Một kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A.
B. Tất cả kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A.
C. Một số được tính bằng n(n – 1). … .2.1.
D. Một số được tính bằng n!.Trả lời:
Lời giải
Đáp án đúng là A
Cho tập hợp A gồm n phần tử (n ∈ ℕ*).
Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó.
Vậy ta chọn phương án A.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n. Mỗi chỉnh hợp chập k của n phần tử đã cho là:
A. Một kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A.
B. Tất cả kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.
C. Một kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.
D. Một số được tính bằng n(n – 1)…(n – k + 1).
Câu hỏi:
Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n. Mỗi chỉnh hợp chập k của n phần tử đã cho là:
A. Một kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A.
B. Tất cả kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.
C. Một kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.
D. Một số được tính bằng n(n – 1)…(n – k + 1).Trả lời:
Lời giải
Đáp án đúng là C
Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n.
Mỗi kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho.
Vậy ta chọn phương án C.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?
A. \(A_n^k = n\left( {n – 1} \right)…\left( {n – k + 1} \right)\).
B. Pn = n(n – 1). … .2.1.
C. Pn = n!.
D. \(A_n^k = \frac{{n!}}{{k!}}\).
Câu hỏi:
Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?
A. \(A_n^k = n\left( {n – 1} \right)…\left( {n – k + 1} \right)\).
B. Pn = n(n – 1). … .2.1.
C. Pn = n!.
D. \(A_n^k = \frac{{n!}}{{k!}}\).Trả lời:
Lời giải
Đáp án đúng là D
⦁ Công thức tính số các chỉnh hợp chập k của n phần tử là:
\(A_n^k = n\left( {n – 1} \right)…\left( {n – k + 1} \right)\).
Do đó phương án A đúng.
⦁ Công thức tính số các hoán vị của n phần tử là:
Pn = n(n – 1). … .2.1 = n!.
Do đó phương án B, C đúng.
Suy ra phương án D sai.
Vậy ta chọn phương án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9, ta lập được bao nhiêu số tự nhiên:
Gồm 9 chữ số đôi một khác nhau?
Câu hỏi:
Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9, ta lập được bao nhiêu số tự nhiên:
Gồm 9 chữ số đôi một khác nhau?Trả lời:
Lời giải
Mỗi số tự nhiên lập được là một hoán vị của 9 chữ số đã cho.
Số các số tự nhiên có thể lập được là: P9 = 9! = 362880 (số).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9, ta lập được bao nhiêu số tự nhiên:
Gồm 7 chữ số đôi một khác nhau?
Câu hỏi:
Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9, ta lập được bao nhiêu số tự nhiên:
Gồm 7 chữ số đôi một khác nhau?Trả lời:
Lời giải
Mỗi số tự nhiên lập được là một chỉnh hợp chập 7 của 9 chữ số đã cho.
Số các số tự nhiên có thể lập được là:\(A_9^7 = 181440\) (số).====== **** mời các bạn xem câu tiếp bên dưới **** =====