Với tóm tắt lý thuyết Toán lớp 10 Chương 10: Xác suất sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 10.
Lý thuyết Toán lớp 10 Chương 10: Xác suất
A. Lý thuyết Chương 10: Xác suất
1. Phép thử ngẫu nhiên và không gian mẫu
– Phép thử ngẫu nhiên (gọi tắt là phép thử) là một hoạt động mà ta không thể biết trước được kết quả của nó.
– Tập hợp tất cả các kết quả có thể có của phép thử ngẫu nhiên được gọi là không gian mẫu, kí hiệu là Ω.
– Chú ý: Trong chương này ta chỉ xét các phép thử mà không gian mẫu gồm hữu hạn phần tử.
Ví dụ: Xúc xắc có 6 mặt đánh số chấm từ 1 chấm đến 6 chấm. Không gian mẫu của 1 lần tung xúc xắc là Ω = {1; 2; 3; 4; 5; 6}.
Phép thử: Tung xúc xắc 2 lần sẽ có không gian mẫu gồm 6.6 = 36 cách xuất hiện mặt của xúc xắc.
2. Biến cố
– Mỗi tập con của không gian mẫu được gọi là một biến cố, kí hiệu là A, B, C, …
– Một kết quả thuộc A được gọi là kết quả làm cho A xảy ra, hoặc kết quả thuận lợi cho A.
– Biến cố chắc chắn là biến cố luôn xảy ra, kí hiệu là Ω.
– Biến cố không thể là biến cố không bao giờ xảy ra, kí hiệu là ∅.
– Đôi khi ta cần dùng các quy tắc đếm và công thức tổ hợp để xác định số phần tử của không gian mẫu và số kết quả thuận lợi cho mỗi biến cố.
Ví dụ: Một nhóm có 3 bạn nam và 2 bạn nữ. Chọn ngẫu nhiên cùng lúc 2 bạn đi làm vệ sinh lớp.
a) Xác định số phần tử của không gian mẫu.
b) Xác định số kết quả thuận lợi cho biến cố “Chọn được 1 bạn nam và 1 bạn nữ”.
Hướng dẫn giải
a) Do ta chọn 2 bạn khác nhau từ 5 bạn trong nhóm và không tính thứ tự nên số phần tử của không gian mẫu là = 10.
b) Chọn 1 bạn nữ từ 2 bạn nữ có = 2 cách chọn;
Chọn 1 bạn nam từ 3 bạn nam có = 3 cách chọn.
Theo quy tắc nhân có tất cả 2.3 = 6 cách chọn ra 1 bạn nam và 1 bạn nữ từ nhóm bạn.
Do đó số kết quả thuận lợi cho biến cố “Chọn được 1 bạn nam và 1 bạn nữ” là 6.
3. Xác suất của biến cố
– Giả sử một phép thử có không gian mẫu Ω gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố.
Xác suất của biến cố A là một số, kí hiệu là P(A), được xác định bởi công thức:
P(A) =
Trong đó n(A) và n() lần lượt là kí hiệu số phần tử của tập A và .
Chú ý:
+ Định nghĩa trên được gọi là định nghĩa cổ điển của xác suất.
+ Với mọi biến cố A, 0 ≤ P(A) ≤ 1.
+ P() = 1, P(∅) = 0.
+ Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng gần 1.
Ví dụ: Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Tính xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ”.
Hướng dẫn giải
– Tính số phần tử của không gian mẫu:
Lấy 3 viên bi ngẫu nhiên trong 8 viên bi có cách.
Do đó số phần tử của không gian mẫu là n() = = 56.
– Tính số kết quả thuận lợi cho biến cố A:
Lấy được 3 viên bi màu đỏ trong số 5 viên bi màu đỏ có cách.
Do đó, số kết quả thuận lợi cho biến cố A là n(A) = = 10.
Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:
P(A) = =
Vậy xác suất của biến cố A là P(A) = .
4. Tính xác suất bằng sơ đồ hình cây
– Trong chương VIII, chúng ta đã được làm quen với phương pháp sử dụng sơ đồ hình cây để liệt kê các kết quả của một thí nghiệm. Ta cũng có thể sử dụng sơ đồ hình cây để tính xác suất
Ví dụ: Tung một đồng xu cân đối và đồng chất 3 lần liên tiếp. Tính xác suất của biến cố A: “Trong 3 lần tung có ít nhất 1 lần xuất hiện mặt ngửa”.
Hướng dẫn giải
Kí hiệu S nếu tung được mặt sấp, N nếu tung được mặt ngửa.
Các kết quả có thể xảy ra trong 3 lần tung được thể hiện trong sơ đồ hình cây dưới đây:
Có tất cả 8 kết quả xảy ra, trong đó có 7 kết quả thuận lợi cho biến cố A.
Do đó:
P(A) = .
5. Biến cố đối
– Cho A là một biến cố. Khi đó biến cố “Không xảy ra A”, kí hiệu là , được gọi là biến cố đối của A.
; P + P(A) = 1.
Ví dụ: Trong giỏ có 3 quả cam, 4 quả táo và 2 quả đào. Lấy ngẫu nhiên từ trong giỏ ra 4 quả. Tính xác suất để trong 4 quả lấy ra có ít nhất 1 quả táo.
Hướng dẫn giải
Gọi A là biến cố “Trong 4 quả lấy ra có ít nhất 1 quả táo”.
Thì biến cố đối của A là : “Trong 4 quả lấy ra không có quả táo nào”.
Ta sẽ tính xác suất của biến cố :
Lấy 4 quả trong tổng số 3 + 4 + 2 = 9 quả có cách.
Do đó, số phần tử của không gian mẫu là n= = 126.
Lấy 4 quả trong số 5 quả cam và đào thì có cách.
Do đó, số kết quả thuận lợi cho biến cố là: n() = = 5.
Xác suất của biến cố là: P =
Suy ra xác suất của biến cố A là:
P(A) = 1 – P =.
6. Nguyên lí xác suất bé
Trong thực tế, các biến cố có xác suất xảy ra gần bằng 1 thì gần như là luôn xảy ra trong một phép thử. Ngược lại, các biến cố mà xác suất xảy ra gần bằng 0 thi gần như không xảy ra trong một phép thử.
Trong Lí thuyết Xác suất, Nguyên lí xác suất bé được phát biểu như sau:
Nếu một biến cố có xác suất rất bé thì trong một phép thử, biến cố đó sẽ không xảy ra.
Ví dụ: Khi một con tàu lưu thông trên biển, xác suất nó bị đắm là số dương. Tuy nhiên, nếu tuân thủ các quy tắc an toàn thi xác suất xảy ra biển cố này là rất nhỏ, con tàu có thể yên tâm hoạt động.
Nếu một nhà sản xuất tuyên bố tỉ lệ gây sốc phản vệ nặng khi tiêm một loại vắc xin là rất nhỏ, chỉ khoảng 0,001, thì có thể tiêm vắc xin đó cho mọi người được không? Câu trả lời là không, vì sức khoẻ và tính mạng con người là vô giá, nếu tiêm loại vắc xin đó cho hàng tỉ người thì khả năng có nhiều người bị sốc phản vệ nặng là rất cao.
B. Bài tập tự luyện
Bài 1. Cho tập hợp A gồm các số nguyên dương nhỏ hơn hoặc bằng 50. Chọn 1 phần tử trong tập hợp A.
a) Tìm số phần tử của không gian mẫu.
b) Gọi B là biến cố “Phần tử được chọn chia hết cho 10”. Tính số kết quả thuận lợi cho biến cố B.
Hướng dẫn giải
a) Liệt kê các phần tử của tập A: A = {1; 2; 3; …; 50}.
Dễ dàng thấy A có 50 phần tử. Chọn 1 phần tử trong số 50 phần tử có 50 cách chọn.
Do đó không gian mẫu có 50 phần tử, = {1; 2; 3; …; 50}.
b) Các phần tử trong A chia hết cho 10: {10; 20; 30; 40; 50}.
Như vậy A có 5 phần tử chia hết cho 10, do đó số phần tử thuận lợi cho biến cố B “Phần tử được chọn chia hết cho 10” là 5.
Bài 2. Trên bàn có 3 quả táo và 4 quả cam. Xác định không gian mẫu của các phép thử sau:
a) Lấy 3 quả cùng lúc ở trên bàn.
b) Lấy 2 quả ở trên bàn sau đó bỏ ra ngoài lấy tiếp 1 quả nữa.
Hướng dẫn giải
a) Lấy 3 quả trong 7 quả ở trên bàn và không tính thứ tự nên số phần tử không gian mẫu là = 35.
b) Lấy 2 quả trong 7 quả ở trên bàn và không tính thứ tự nên số cách là: = 21 (cách).
Sau khi bỏ 2 quả ra ngoài còn lại 5 quả. Lấy 1 quả trong 5 quả trên bàn có 5 cách.
Vậy số phần tử không gian mẫu là: 21. 5 = 105.
Bài 3. Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi.
a) Tính số phần tử của không gian mẫu.
b) Cho các biến cố:
A: “4 viên bi lấy ra có đúng hai viên bi màu trắng”.
B: “4 viên bi lấy ra có ít nhất một viên bi màu đỏ”.
Tính số kết quả thuận lợi của mỗi biến cố trên.
Hướng dẫn giải
a) Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là: = 10 626.
Vậy số phần tử của không gian mẫu là 10 626.
b)
• Lấy 2 viên bi màu trắng trong 10 viên màu trắng có cách.
Lấy 2 viên bi trong 6 + 8 = 14 viên bi đỏ và
xanh có cách.
Theo quy tắc nhân thì số phần tử của biến cố A: ” 4 viên bi lấy ra có đúng hai viên bi màu trắng” là: . = 4 095.
Vậy biến cố A: “4 viên bi lấy ra có đúng hai viên bi màu trắng” có 4095 kết quả thuận lợi.
• Lấy 4 viên bi trong 18 viên bi xanh, trắng có cách.
Như vậy biến cố “Lấy 4 viên bi không có màu đỏ” có kết quả thuận lợi.
Biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu đỏ” có số kết quả thuận lợi là:
10 626 – = 7 566.
Vậy có 7566 kết quả thuận lợi cho biến cố B.
Bài 4. Bộ bài tú lơ khơ có 52 quân bài. Rút ngẫu nhiên ra 4 quân bài. Tính số kết quả thuận lợi của các biến cố:
A: “Rút ra được tứ quý K”.
B: “4 quân bài rút ra có ít nhất một con Át”.
Hướng dẫn giải
– Trong bộ bài chỉ có 1 tứ quý K nên muốn rút được 4 quân bài là tứ quý K thì chỉ có 1 cách.
Vậy số phần tử thuận lợi của biến cố A: “Rút ra được tứ quý K” là 1.
– Ta tìm số kết quả thuận lợi cho biến cố “Rút 4 quân bài không có quân Át nào”.
Trong 52 quân bài có 4 quân Át nên có tất cả 52 – 4 = 48 quân bài không phải quân Át.
Rút 4 quân bài trong 48 quân bài (không có Át) có cách.
Rút 4 quân bài trong 52 quân bài có: cách.
Như vậy, rút 4 quân bài có ít nhất một quân Át có số cách là:
– = 76 145.
Vậy biến cố B: “4 quân bài rút ra có ít nhất một con Át” có 76 145 kết quả thuận lợi.
Bài 5. Trong một chiếc hộp có 20 viên bi, trong đó có 8 viên bi màu đỏ, 7 viên bi màu xanh và 5 viên bi màu vàng. Lấy ngẫu nhiên ra 3 viên bi. Tính xác suất để 3 viên bi lấy ra đều màu đỏ.
Hướng dẫn giải
Gọi biến cố A: “3 viên bi lấy ra đều màu đỏ”.
Số cách lấy 3 viên bi từ 20 viên bi là: .
Do đó số phần tử của không gian mẫu là: n= = 1140.
Lấy 3 viên bi màu đỏ từ 8 viên bi đỏ là: .
Số kết quả thuận lợi cho biến cố A là: n(A) = = 56.
Xác suất của biến cố A: “3 viên bi lấy ra đều màu đỏ” là:
P(A) = .
Vậy xác suất để 3 viên bi lấy ra đều màu đỏ là
Bài 6. Bạn Nam có 3 chiếc ảnh giấy. Nam tung lần lượt từng chiếc ảnh lên để rơi trên bàn. Tính xác suất để sau 3 lần tung thì 3 chiếc ảnh có 2 chiếc sấp, 1 chiếc ngửa. (Tính theo phương pháp sơ đồ hình cây).
Hướng dẫn giải
Gọi A là biến cố “Sau 3 lần tung thì 3 chiếc ảnh có 2 chiếc sấp, 1 chiếc ngửa”.
Kí hiệu S nếu Nam tung được mặt sấp, N nếu Nam tung được mặt ngửa.
Các kết quả có thể xảy ra trong 3 lần tung được thể hiện trong sơ đồ hình cây dưới đây:
Có tất cả 8 kết quả xảy ra, trong đó có 3 kết quả thuận lợi cho biến cố A.
Do đó: P(A) =
Vậy xác suất để sau 3 lần tung thì 3 chiếc ảnh có 2 chiếc sấp, 1 chiếc ngửa là
Bài 7. Chọn ngẫu nhiên ba số tự nhiên trong các số tự nhiên từ 1 đến 50. Tính xác suất của biến cố B: “Trong ba số có một số là số chính phương, hai số còn lại chia hết cho 5”.
Hướng dẫn giải
Từ 1 đến 50 có 50 số tự nhiên.
Chọn ngẫu nhiên 3 số tự nhiên trong 50 số ta có cách.
Do đó số phần tử của không gian mẫu là: n= = 19 600.
Từ 1 đến 50 có các số chính phương là: 1, 4, 9, 16, 25, 36, 49 (7 số).
Từ 1 đến 50 có các số chia hết cho 5 là: 5; 10; 15; 20; 25; 30; 35; 40; 45; 50 (10 số).
Chọn 1 số trong 7 số chính phương có cách.
Chọn 2 số trong 10 số chính phương có cách.
Theo quy tắc nhân, số kết quả thuận lợi cho biến cố B là:
n(B) = . = 315.
Xác suất của biến cố B là: P(B) = .
Vậy xác suất của biến cố B: “Trong ba số có một số là số chính phương, hai số còn lại chia hết cho 5” là
Bài 8. Ngân hàng đề thi môn Toán gồm 100 câu hỏi chỉ nằm trong 2 chương I và II. Thầy giáo chọn 10 câu hỏi để ra đề. Tính xác suất để thầy giáo chọn ít nhất 1 câu trong chương I, biết số câu hỏi của chương I gấp 3 lần số câu hỏi chương II.
Hướng dẫn giải
Số câu hỏi của chương I gấp 3 lần số câu hỏi chương II mà tổng số câu hỏi của 2 chương là 100 nên số câu hỏi của chương I là 75 câu và số câu hỏi của chương II là 25 câu.
Thầy giáo chọn 10 câu hỏi trong 100 câu hỏi có cách.
Do đó số phần tử của không gian mẫu là n= .
Gọi A là biến cố: “Thầy giáo chọn ít nhất 1 câu trong chương I”.
Suy ra biến cố là: “Thầy giáo không chọn câu nào trong chương I”.
Chọn 10 câu hỏi trong 25 câu hỏi của chương II có cách.
Do đó sối kết quả thuận lợi cho biến cố là: n= .
Xác suất của biến cố là: P=
Xác suất của biến cố A là:
P(A) = 1 – P = 1 – ≈ 0,9999998112.
Vậy xác suất để thầy giáo chọn ít nhất 1 câu trong chương I là khoảng 0,9999998112.
====== ****&**** =====