Câu hỏi:
Một ngọn hải đăng đặt tại vị trí A cách bờ biển một khoảng cách AB = 4 km. Trên bờ biển có một cái kho ở vị trí C cách B một khoảng là 7 km. Người canh hải đăng có thể chèo thuyền từ A đến vị trí M trên bờ biển với vận tốc 3 km/h rồi đi bộ đến C với vận tốc 5 km/h như Hình 35. Tính khoảng cách từ vị trí B đến M, biết thời gian người đó đi từ A đến C là 148 phút.
Trả lời:
Đổi 148 phút = giờ.
Gọi khoảng cách từ vị trí B đến M là x (km, x > 0).
Khi đó ta có: AB = 4 km, BM = x km, BC = 7 km, MC = BC – BM = 7 – x (km).
Tam giác ABM vuông tại B, áp dụng định lý Pythagore ta có:
AM2 = AB2 + BM2 = 42 + x2 = 16 + x2
Do đó khoảng cách từ vị trí A đến M là km và vận tốc chèo thuyền là 3 km/h nên thời gian chèo thuyền từ A đến M là (giờ).
Khoảng cách từ M đến C là 7 – x (km) và người đó đi bộ với vận tốc 5 km/h nên thời gian đi bộ từ M đến C là (giờ).
Thời gian người đó đi từ A đến C chính bằng tổng thời gian người đó đi từ A đến M và từ M đến C nên ta có t1 + t2 = t = (giờ).
Khi đó ta có phương trình:
(1)
Bình phương cả hai vế của (1) ta được: 25.(16 + x2) = (16 + 3x)2
⇔ 400 + 25x2 = 256 + 96x + 9x2
⇔ 16x2 – 96x + 144 = 0
⇔ x = 3 (thỏa mãn điều kiện x > 0)
Vậy khoảng cách từ vị trí B đến vị trí M là 3 km.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hai ô tô xuất phát tại cùng một điểm với vận tốc trung bình như nhau là 40 km/h từ hai vị trí A và B trên hai con đường vuông góc với nhau để đi về bến O là giao của hai con đường. Vị trí A cách bến 8 km, vị trí B cách bến 7 km. Gọi x là thời gian hai xe bắt đầu chạy cho tới khi cách nhau 5 km (Hình 31).
Bạn Dương xác định được x thỏa mãn phương trình
Làm thế nào để tìm được giá trị của x?
Câu hỏi:
Hai ô tô xuất phát tại cùng một điểm với vận tốc trung bình như nhau là 40 km/h từ hai vị trí A và B trên hai con đường vuông góc với nhau để đi về bến O là giao của hai con đường. Vị trí A cách bến 8 km, vị trí B cách bến 7 km. Gọi x là thời gian hai xe bắt đầu chạy cho tới khi cách nhau 5 km (Hình 31).
Bạn Dương xác định được x thỏa mãn phương trình
Làm thế nào để tìm được giá trị của x?Trả lời:
Để tìm được giá trị của x, ta cần giải phương trình (1).
Điều kiện xác định: (8 – 40x)2 + (7 – 40x)2 ≥ 0.
Sau bài học này, ta sẽ giải được phương trình trên như sau:
Bình phương hai vế ta có: (8 – 40x)2 + (7 – 40x)2 = 25
⇔ 1 600x2 – 640x + 64 + 1 600x2 – 560x + 49 = 25
⇔ 3 200x2 – 1 200x + 88 = 0
⇔ 400x2 – 150x + 11 = 0
Phương trình trên có hai nghiệm là x1 = 0,1, x2 = 0,275.
Thử lại với điều kiện, ta thấy x = 0,1 thỏa mãn.
Vậy x = 0,1.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Giải phương trình: 3×2−4x+1=x2+x−1 (1).
Câu hỏi:
Giải phương trình: (1).
Trả lời:
Bình phương hai vế của (1) ta được: 3x2 – 4x + 1 = x2 + x – 1 (2).
Ta có: (2) ⇔ 2x2 – 5x + 2 = 0 .
Thay lần lượt hai giá trị trên vào (1) ta thấy chỉ có x = 2 thỏa mãn.
Vậy phương trình (1) có nghiệm là x = 2.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Giải phương trình: 3x−5=x−1
Câu hỏi:
Giải phương trình:
Trả lời:
Ta có: (1).
Trước hết ta giải bất phương trình x – 1 ≥ 0 (2).
Ta có: (2) ⇔ x ≥ 1.
Bình phương hai vế của (1) ta được 3x – 5 = (x – 1)2 (3).
Ta có: (3) ⇔ 3x – 5 = x2 – 2x + 1 ⇔ x2 – 5x + 6 = 0 .
Do đó phương trình (3) có hai nghiệm là x = 2 và x = 3.
Hai giá trị trên đều thỏa mãn x ≥ 1.
Vậy phương trình đã cho có hai nghiệm là x = 2 và x = 3.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Giải các phương trình sau:
a) 2×2−3x−1=2x+3 ;
b) 4×2−6x−6=x2−6 ;
c) x+9=2x−3 ;
d) −x2+4x−2=2−x .
Câu hỏi:
Giải các phương trình sau:
a) ;
b) ;
c) ;
d) .Trả lời:
a) (1)
Bình phương hai vế của (1) ta được: 2x2 – 3x – 1 = 2x + 3
⇔ 2x2 – 3x – 1 – 2x – 3 = 0
⇔ 2x2 – 5x – 4 = 0Thử lại ta thấy cả hai giá trị trên đều thỏa mãn (1).
Vậy phương trình đã cho có hai nghiệm là và .
b) (2)
Bình phương hai vế của (2) ta được: 4x2 – 6x – 6 = x2 – 6
⇔ 4x2 – x2 – 6x – 6 + 6 = 0
⇔ 3x2 – 6x = 0
⇔ 3x(x – 2) = 0Thử lại ta thấy hai giá trị x = 0 và x = 2 đều không thỏa mãn (2).
Vậy phương trình đã cho vô nghiệm.
c) (3)
Trước hết ta giải bất phương trình 2x – 3 ≥ 0 ⇔ x ≥ .
Bình phương cả hai vế của (3) ta được: x + 9 = (2x – 3)2
⇔ x + 9 = 4x2 – 12x + 9
⇔ 4x2 – 12x + 9 – x – 9 = 0
⇔ 4x2 – 13x = 0
⇔ x(4x – 13) = 0Trong hai giá trị trên có giá trị x = thỏa mãn x ≥ .
Vậy nghiệm của phương trình đã cho là x = .
d) (4)
Trước hết ta giải bất phương trình: 2 – x ≥ 0 ⇔ x ≤ 2.
Bình phương hai vế của (4) ta được: – x2 + 4x – 2 = (2 – x)2
⇔ – x2 + 4x – 2 = 4 – 4x + x2
⇔ 2x2 – 8x + 6 = 0
⇔ x2 – 4x + 3 = 0Trong hai giá trị trên có giá trị x = 1 thỏa mãn x ≤ 2.
Vậy nghiệm của phương trình đã cho là x = 1.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Giải các phương trình sau:
a) 2−x+2x=3 ;
b) −x2+7x−6+x=4 .
Câu hỏi:
Giải các phương trình sau:
a) ;
b) .Trả lời:
a)
(1)
Ta giải bất phương trình: 3 – 2x ≥ 0 ⇔ x ≤ .
Bình phương hai vế của (1) ta được: 2 – x = (3 – 2x)2
⇔ 2 – x = 9 – 12x + 4x2
⇔ 4x2 – 11x + 7 = 0Trong hai giá trị trên ta thấy x = 1 thỏa mãn x ≤ .
Vậy nghiệm của phương trình đã cho là x = 1.
b) (2)Ta giải bất phương trình: 4 – x ≥ 0 ⇔ x ≤ 4.
Bình phương hai vế của (2) ta được: – x2 + 7x – 6 = (4 – x)2
⇔ – x2 + 7x – 6 = 16 – 8x + x2
⇔ 2x2 – 15x + 22 = 0Trong hai giá trị trên có x = 2 thỏa mãn x ≤ 4.
Vậy nghiệm của phương trình đã cho là x = 2.====== **** mời các bạn xem câu tiếp bên dưới **** =====