Câu hỏi:
Một máy bay đang bay từ hướng đông sang hướng tây với tốc độ 700 km/h thì gặp luồng gió thổi từ hướng đông bắc sang hướng tây nam với tốc độ 40 km/h (Hình 68). Máy bay bị thay đổi vận tốc sau khi gặp gió thổi. Tìm tốc độ mới của máy bay (làm tròn kết quả đến hàng phần trăm theo đơn vị km/h).
Trả lời:
Giả sử vận tốc của máy bay theo hướng đông sang tây là , vận tốc của luồng gió theo hướng đông bắc sang tây nam là và vận tốc mới của máy bay chính là thỏa mãn . Ta cần tính độ dài vectơ .
Theo bài ra ta có: km/h, km/h, .
Biểu diễn bài toán như hình vẽ dưới đây:
Khi đó ta có: ABCD là hình bình hành có .
Suy ra: ; , .
Ta cần tính độ dài đoạn thẳng BD, đây chính là độ dài vectơ .
Áp dụng định lí sin trong tam giác ABD, ta có:
BD2 = AD2 + AB2 – 2 . AD . AB . cosA
= 402 + 7002 – 2 . 40 . 700 . cos135°
≈ 531 197, 98
Suy ra BD ≈ 728,83 (km/h).
Vậy tốc độ mới của máy bay sau khi gặp gió thổi là 728,83 km/h.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong vật lí, nếu có một lực F→ tác động lên một vật tại điểm O và làm cho vật đó di chuyển một quãng đường s = OM (Hình 63) thì công A của lực F→ được tính theo công thức A=F→ . OM→ . cosφ trong đó F→ gọi là cường độ của lực F→ tính bằng Newton (N), OM→ là độ dài của vectơ OM→ tính bằng mét (m), φ là góc giữa hai vectơ OM→ và F→ , còn công A tính bằng Jun (J).
Trong toán học, giá trị của biểu thức A=F→ . OM→ . cosφ (không kể đơn vị đo) được gọi là gì?
Câu hỏi:
Trong vật lí, nếu có một lực tác động lên một vật tại điểm O và làm cho vật đó di chuyển một quãng đường s = OM (Hình 63) thì công A của lực được tính theo công thức trong đó gọi là cường độ của lực tính bằng Newton (N), là độ dài của vectơ tính bằng mét (m), φ là góc giữa hai vectơ và , còn công A tính bằng Jun (J).
Trong toán học, giá trị của biểu thức (không kể đơn vị đo) được gọi là gì?Trả lời:
Giá trị của biểu thức là tích vô hướng của hai vectơ và .
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC vuông tại A có B^=30° , AB = 3 cm. Tính BA→. BC→; CA→. CB→ .
Câu hỏi:
Cho tam giác ABC vuông tại A có , AB = 3 cm. Tính .
Trả lời:
Ta có tam giác ABC vuông ở A nên
.
Lại có: tan B = ⇒ AC = AB . tanB = 3 . tan 30° = .
Và sin B = ⇒ BC = .
Ta có: = = .
= = = 6 . cos 60° = 3.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC đều cạnh a, AH là đường cao. Tính:
a) CB→ . BA→ ;
b) AH→ . BC→ .
Câu hỏi:
Cho tam giác ABC đều cạnh a, AH là đường cao. Tính:
a) ;
b) .Trả lời:
a) Tam giác ABC đều nên và AB = BC = AC = a.
Lại có: .
Ta có:
.
Vậy .
b) Do AH là đường cao của tam giác ABC nên AH ⊥ BC.
Do đó: nên .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh rằng với hai vectơ bất kì a→, b→ , ta có: a→+b→2=a→2+2a→.b→+b→2
a→−b→2=a→2−2a→.b→+b→2
a→−b→.a→+b→=a→2−b→2
Câu hỏi:
Chứng minh rằng với hai vectơ bất kì , ta có:
Trả lời:
+ Ta có:
(bình phương vô hướng của vectơ )
(áp dụng tính chất giao hoán)
Vậy .
+ Ta có:
(bình phương vô hướng của vectơ )
(áp dụng tính chất giao hoán)
Vậy .
+ Ta có:
(áp dụng tính chất giao hoán)
.
Vậy .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Sử dụng tích vô hướng, chứng minh minh định lí Pythagore: Tam giác ABC vuông tại A khi và chỉ khi BC2 = AB2 + AC2.
Câu hỏi:
Sử dụng tích vô hướng, chứng minh minh định lí Pythagore: Tam giác ABC vuông tại A khi và chỉ khi BC2 = AB2 + AC2.
Trả lời:
+ Ta chứng minh định lí thuận:
Có tam giác ABC vuông ở A, cần chứng minh BC2 = AB2 + AC2.
Tam giác ABC vuông tại A nên .
Ta có:
Suy ra: BC2 = AC2 + AB2 – 2 . AC . AB . cos
= AB2 + AC2 – 2 . AC . AB . cosA
= AB2 + AC2 – 2 . AC . AB . cos 90°
= AB2 + AC2 – 2 . AC . AB . 0
= AB2 + AC2.
Vậy BC2 = AB2 + AC2.
+ Ta chứng minh định lí đảo:
Cho tam giác ABC có BC2 = AB2 + AC2 thì tam giác ABC vuông tại A.
Ta có:
Suy ra: BC2 = AC2 + AB2 – 2 . AC . AB . cos (*)
Mà theo giả thiết ta có: BC2 = AB2 + AC2 nên thay vào (*) ta được:
BC2 = BC2 – 2 . AC . AB . cos
Suy ra: 2 . AC . AB . cos = 0
hay
Do đó: .
Vậy tam giác ABC vuông tại A.====== **** mời các bạn xem câu tiếp bên dưới **** =====