Câu hỏi:
Hai lực cho trước cùng tác dụng lên một vật tại điểm O và tạo với nhau một góc làm cho vật di chuyển theo hướng từ O đến C (Hình 74). Lập công thức tính cường độ của hợp lực làm cho vật di chuyển theo hướng từ O đến C (giả sử chỉ có đúng hai lực làm cho vật di chuyển).
Trả lời:
Ta thấy, AOBC là hình bình hành.
Do đó:
Suy ra: (1).
Ta cần tính cường độ của hợp lực hay chính là tính .
Từ (1) suy ra .
. (2)
Ta lại có: (3).
Từ (2) và (3) suy ra:
.
Vậy công thức tính cường độ của hợp lực làm cho vật di chuyển theo hướng từ O đến C là .
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có AB = 3, AC = 4, BAC^=120° . Tính (làm tròn kết quả đến hàng đơn vị):
a) Độ dài cạnh BC và độ lớn góc B;
b) Bán kính đường tròn ngoại tiếp;
c) Diện tích của tam giác;
d) Độ dài đường cao xuất phát từ A;
e) AB→ . AC→, AM→ .BC→ với M là trung điểm của BC.
Câu hỏi:
Cho tam giác ABC có AB = 3, AC = 4, . Tính (làm tròn kết quả đến hàng đơn vị):
a) Độ dài cạnh BC và độ lớn góc B;
b) Bán kính đường tròn ngoại tiếp;
c) Diện tích của tam giác;
d) Độ dài đường cao xuất phát từ A;
e) với M là trung điểm của BC.Trả lời:
a) + Áp dụng định lí côsin trong tam giác ABC ta có:
BC2 = AB2 + AC2 – 2 . AB . AC . cos
= 32 + 42 – 2 . 3. 4 . cos 120°
= 9 + 16 – (– 12)
= 37
Suy ra: .
+ Ta có:
Suy ra .
b) Áp dụng định lí sin trong tam giác ABC ta có:
Suy ra: .
Vậy bán kính đường tròn ngoại tiếp tam giác ABC là R ≈ 3.
c) Diện tích tam giác ABC là: .
d) Kẻ đường cao AH.
Ta có diện tích tam giác ABC là:
Suy ra: .
e)
+ Ta có:
= 3 . 4 . cos 120° = – 6.
Do đó: .
+ Do M là trung điểm của BC nên ta có: .
Suy ra: .
Khi đó:
Vậy .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Không dùng máy tính cầm tay, hãy tính giá trị của các biểu thức sau:
A = (sin 20° + sin 70°)2 + (cos 20° + cos 110°)2,
B = tan 20° + cot 20° + tan 110° + cot 110°.
Câu hỏi:
Không dùng máy tính cầm tay, hãy tính giá trị của các biểu thức sau:
A = (sin 20° + sin 70°)2 + (cos 20° + cos 110°)2,
B = tan 20° + cot 20° + tan 110° + cot 110°.Trả lời:
+ Ta có:
A = (sin 20° + sin 70°)2 + (cos 20° + cos 110°)2
= [sin(90° – 70°) + sin 70°]2 + [cos(90° – 70°) + cos(180° – 70°)]2
= (cos70° + sin 70°)2 + [sin 70° + (– cos 70°)]2
= (cos 70° + sin 70°)2 + (sin 70° – cos 70°)2
= cos2 70° + 2 . cos 70° . sin 70° + sin2 70° + sin2 70° – 2 . sin 70° . cos 70° + cos2 70°
= 2(cos2 70° + sin2 70°)
= 2 . 1 = 2
Vậy A = 2.
+ Ta có:
B = tan 20° + cot 20° + tan 110° + cot 110°
= tan (90° – 70°) + cot(90° – 70°) + tan (180° – 70°) + cot (180° – 70°)
= cot 70° + tan 70° + (– tan 70°) + (– cot 70°)
= (cot 70° – cot 70°) + (tan 70° – tan 70°)
= 0 + 0 = 0
Vậy B = 0.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Không dùng thước đo góc, làm thế nào để biết số đo góc đó.
Bạn Hoài vẽ góc xOy và đố bạn Đông làm thế nào để có thể biết được số đo góc của góc này khi không có thước đo góc. Bạn Đông làm như sau:
– Chọn các điểm A, B lần lượt thuộc các tia Ox và Oy sao cho OA = OB = 2 cm;
– Đo độ dài đoạn thẳng AB được AB = 3,1 cm.
Từ các dữ kiện trên bạn Đông tính được cosxOy^ , từ đó suy ra độ lớn góc xOy.
Em hãy cho biết số đo góc xOy ở Hình 69 bằng bao nhiêu độ (làm tròn kết quả đến hàng đơn vị).
Câu hỏi:
Không dùng thước đo góc, làm thế nào để biết số đo góc đó.
Bạn Hoài vẽ góc xOy và đố bạn Đông làm thế nào để có thể biết được số đo góc của góc này khi không có thước đo góc. Bạn Đông làm như sau:
– Chọn các điểm A, B lần lượt thuộc các tia Ox và Oy sao cho OA = OB = 2 cm;
– Đo độ dài đoạn thẳng AB được AB = 3,1 cm.
Từ các dữ kiện trên bạn Đông tính được cos , từ đó suy ra độ lớn góc xOy.Em hãy cho biết số đo góc xOy ở Hình 69 bằng bao nhiêu độ (làm tròn kết quả đến hàng đơn vị).
Trả lời:
* Tính góc xOy bạn Hoài vẽ:
Áp dụng hệ quả của định lí côsin trong tam giác ABO ta có:Do đó:
Vậy từ các dự kiện bạn Đông tính được, ta suy ra .
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có hai trạm quan sát A và B ven hồ và một trạm quan sát C ở giữa hồ. Để tính khoảng cách từ A và từ B đến C, người ta làm như sau (Hình 70):
– Đo góc BAC được 60°, đo góc ABC được 45°;
– Đo khoảng cách AB được 1 200 m.
Khoảng cách từ trạm C đến các trạm A và B bằng bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?
Câu hỏi:
Có hai trạm quan sát A và B ven hồ và một trạm quan sát C ở giữa hồ. Để tính khoảng cách từ A và từ B đến C, người ta làm như sau (Hình 70):
– Đo góc BAC được 60°, đo góc ABC được 45°;
– Đo khoảng cách AB được 1 200 m.
Khoảng cách từ trạm C đến các trạm A và B bằng bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?
Trả lời:
Ba vị trí A, B, C tạo thành 3 đỉnh của tam giác ABC.
Ta có: (định lí tổng ba góc trong tam giác ABC)
Suy ra: .
Áp dụng định lí sin trong tam giác ABC ta có:
Do đó: (m);
(m).
Vậy khoảng cách từ trạm C đến trạm A khoảng 878 m và từ trạm C đến trạm B khoảng 1 076 m.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một người đứng ở bờ sông, muốn đo độ rộng của khúc sông chảy qua vị trí đang đứng (khúc sông tương đối thẳng, có thể xem hai bờ song song với nhau).
Từ vị trí đang đứng A, người đó đo được góc nghiêng α = 35° so với bờ sông tới một vị trí C quan sát được ở phía bờ bên kia. Sau đó di chuyển dọc bờ sông đến vị trí B cách A một khoảng d = 50 m và tiếp tục đo được góc nghiêng β = 65° so với bờ bên kia tới vị trí C đã chọn (Hình 71). Hỏi độ rộng của khúc sông chảy qua vị trí người đó đang đứng là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Câu hỏi:
Một người đứng ở bờ sông, muốn đo độ rộng của khúc sông chảy qua vị trí đang đứng (khúc sông tương đối thẳng, có thể xem hai bờ song song với nhau).
Từ vị trí đang đứng A, người đó đo được góc nghiêng α = 35° so với bờ sông tới một vị trí C quan sát được ở phía bờ bên kia. Sau đó di chuyển dọc bờ sông đến vị trí B cách A một khoảng d = 50 m và tiếp tục đo được góc nghiêng β = 65° so với bờ bên kia tới vị trí C đã chọn (Hình 71). Hỏi độ rộng của khúc sông chảy qua vị trí người đó đang đứng là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?Trả lời:
Dựng AD vuông góc với hai bên bờ sông, khi đó AD là độ rộng của khúc sông chạy qua vị trí của người đó đang đứng. Ta cần tính khoảng cách AD.
Xét tam giác ABC ta có: (tính chất góc ngoài tại đỉnh B của tam giác)
Suy ra .
Lại có .
Áp dụng định lí sin trong tam giác ABC ta có: .
Suy ra .
Ta có: .
Tam giác ADC vuông tại D nên .
(m).
Vậy độ rộng của khúc sông chảy qua vị trí người đó đang đứng là 52 m.====== **** mời các bạn xem câu tiếp bên dưới **** =====