Câu hỏi:
Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng. Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Tính xác suất sau 3 bước quân vua trở về ô xuất phát.
A. \(\frac{1}{{16}}\);
B. \(\frac{1}{{32}}\);
C. \(\frac{3}{{32}}\);
D. \(\frac{3}{{64}}\).
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Tại mọi ô đang đứng, ông vua có 8 khả năng lựa chọn để bước sang ô bên cạnh.
Do đó không gian mẫu n(Ω) = 83 = 512.
Gọi A là biến cố “sau 3 bước quân vua trở về ô xuất phát”. Sau ba bước quân vua muốn quay lại ô ban đầu khi ông vua đi theo đường khép kín tam giác. Chia hai trường hợp:
Trường hợp 1, từ ô ban đầu đi đến ô đen, đến đây có 4 cách để đi bước hai rồi về lại vị trí ban đầu. Vậy trường hợp 1 có 4.4 = 16 cách
Trường hợp 2, từ ô ban đầu đi đến ô trắng, đến đây có 2 cách để đi bước hai rồi về lại vị trí ban đầu. Vậy trường hợp 2 có 4.2 = 8 cách
Do số phần tử của biến cố A là n(A) = 16 + 8 = 24.
Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{24}}{{512}}\)\( = \frac{3}{{64}}\).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gieo một đồng tiền liên tiếp 3 lần thì số phần tử của không gian mẫu n(Ω) là
Câu hỏi:
Gieo một đồng tiền liên tiếp 3 lần thì số phần tử của không gian mẫu n(Ω) là
A. 4;
B. 6;
C. 8;
Đáp án chính xác
D. 16.
Trả lời:
Đáp án đúng là: C
Gieo đồng xu liên tiếp 3 lần nên ta có
Lần 1 có 2 khả năng xảy ra (có thể xuất hiện mặt sấp hoặc mặt ngửa).
Lần 2 có 2 khả năng xảy ra (có thể xuất hiện mặt sấp hoặc mặt ngửa).
Lần 3 có 2 khả năng xảy ra (có thể xuất hiện mặt sấp hoặc mặt ngửa).
Vậy số phần tử của không gian mẫu n(Ω) = 2.2.2 = 8.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gieo một con xúc xắc cân đối đồng chất 2 lần. Số phần tử của không gian mẫu là?
Câu hỏi:
Gieo một con xúc xắc cân đối đồng chất 2 lần. Số phần tử của không gian mẫu là?
A. 6;
B. 12;
C. 18;
D. 36.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Gieo một con xúc xắc cân đối đồng chất 2 lần nên ta có
Lần 1 có 6 khả năng sảy ra (số mặt xuất hiện từ 1 chấm đến 6 chấm).
Lần 2 có 6 khả năng sảy ra (số mặt xuất hiện từ 1 chấm đến 6 chấm).
Vậy số phần tử của không gian mẫu n(Ω) = 6.6 = 36.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá bích là
Câu hỏi:
Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá bích là
A. \(\frac{1}{{13}}\);
B. \(\frac{1}{4}\);
Đáp án chính xác
C. \(\frac{{12}}{{13}}\);
D. \(\frac{3}{4}\).
Trả lời:
Đáp án đúng là: B
Số phần tử của không gian mẫu n(Ω) = 52 (vì chọn 1 lá bài trong 52 lá nên có 52 cách chọn)
Gọi A là biến cố lá bài rút được là bích.
Số phần tử của biến cố A là n(A) = 13 (vì một bộ bài có 13 lá bích, chọn 1 lá bích trong 13 lá bích có 13 cách chọn)
Vậy xác suất để lấy được lá bích là \(P(A) = \frac{{13}}{{52}} = \frac{1}{4}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gieo một đồng xu và một con xúc xắc cân đối đồng chất một lần. Số phần tử của không gian mẫu là:
Câu hỏi:
Gieo một đồng xu và một con xúc xắc cân đối đồng chất một lần. Số phần tử của không gian mẫu là:
A. 24;
B. 12;
Đáp án chính xác
C. 6;
D. 8.
Trả lời:
Đáp án đúng là: B
Gieo đồng xu có 2 khả năng có thể sảy ra (hoặc là sấp hoặc là ngửa)
Gieo súc sắc có 6 khả năng có thể sảy ra ({1 chấm, 2 chấm, 3 chấm, 4 chấm, 5 chấm, 6 chấm}).
Số phần tử của không gian mẫu n(Ω) = 2.6 = 12.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gieo đồng xu cân đối đồng chất hai lần. Số phần tử của biến cố để mặt ngửa xuất hiện đúng 1 lần là:
Câu hỏi:
Gieo đồng xu cân đối đồng chất hai lần. Số phần tử của biến cố để mặt ngửa xuất hiện đúng 1 lần là:
A. 2;
Đáp án chính xác
B. 4;
C. 5;
D. 6.
Trả lời:
Đáp án đúng là: A
Vì mặt ngửa xuất hiện 1 lần nên chỉ có thể xuất hiện ở lần đầu gieo hoặc lần thứ 2 gieo nên số phần tử của biến cố là 2.
Do đó các kết quả thuận lợi cho biến cố A là: A = {NS; SN}.
Vậy có 2 kết quả thuận lợi cho A.====== **** mời các bạn xem câu tiếp bên dưới **** =====