Câu hỏi:
Xét chiều biến thiên và vẽ đồ thị của các hàm số: y = |x + 1|
Trả lời:
Hàm số y = |x + 1|Nếu x + 1 ≥ 0 hay x ≥ –1 thì y = x + 1.Nếu x + 1 < 0 hay x < –1 thì y = –(x + 1) = –x – 1. + Tập xác định: R+ Trên (–∞; –1), y = x + 1 đồng biến.Trên (–1 ; +∞), y = –x – 1 nghịch biến.Ta có bảng biến thiên :+ Đồ thị hàm số gồm hai phần:Phần thứ nhất : Nửa đường thẳng y = x + 1 giữ lại các điểm có hoành độ ≥ –1.Phần thứ hai : nửa đường thẳng y = –x – 1 giữ lại các điểm có hoành độ < –1.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Phát biểu quy ước về tập xác định của một hàm số cho bởi công thức.Từ đó hai hàm sốcó gì khác nhau?
Câu hỏi:
Phát biểu quy ước về tập xác định của một hàm số cho bởi công thức.Từ đó hai hàm sốcó gì khác nhau?
Trả lời:
– Tập xác định của hàm số cho bởi công thức y = f(x) là tập hợp các giá trị của x sao cho biểu thức f(x) có nghĩa.- Với quy ước đó:Vậy tập xác định của hàm số là D = RKết luận: Hai hàm số và có tập xác định khác nhau.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Thế nào là hàm đồng biến (nghịch biến) trên khoảng (a; b)?
Câu hỏi:
Thế nào là hàm đồng biến (nghịch biến) trên khoảng (a; b)?
Trả lời:
Cho hàm số y = f(x) xác định trên khoảng (a; b).+ Hàm số y = f(x) đồng biến trên khoảng (a; b) nếu: x1 < x2 ⇔ f(x1) < f(x2) ∀ x1, x2 ∈ (a; b)+ Hàm số y = f(x) nghịch biến trên khoảng (a; b) nếu: x1 < x2 ⇔ f(x1) > f(x2) ∀ x1, x2 ∈ (a; b)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Thế nào là một hàm số chẵn? Thế nào là một hàm số lẻ?
Câu hỏi:
Thế nào là một hàm số chẵn? Thế nào là một hàm số lẻ?
Trả lời:
– Hàm số y = f(x) có tập xác định D được gọi là hàm số chẵn nếu thỏa mãn hai điều kiện: + ∀ x ∈ D thì –x ∈ D + f(–x) = f(x).– Hàm số y = f(x) có tập xác định D được gọi là hàm số lẻ nếu thỏa mãn hai điều kiện: + ∀ x ∈ D thì –x ∈ D + f(–x) = –f(x).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chỉ ra khoảng đồng biến, nghịch biến của hàm số : y = ax + b, trong mỗi trường hợp a > 0 ; a < 0.
Câu hỏi:
Chỉ ra khoảng đồng biến, nghịch biến của hàm số : y = ax + b, trong mỗi trường hợp a > 0 ; a < 0.
Trả lời:
– Khi a > 0, hàm số y = ax + b đồng biến trên khoảng (-∞; +∞) hay đồng biến trên R.- Khi a < 0, hàm số y = ax + b nghịch biến trên khoảng (-∞; +∞) hay nghịch biến trên R.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chỉ ra khoảng đồng biến, nghịch biến của hàm số: y = ax2 + bx + c, trong mỗi trường hợp a > 0 ; a < 0.
Câu hỏi:
Chỉ ra khoảng đồng biến, nghịch biến của hàm số: y = ax2 + bx + c, trong mỗi trường hợp a > 0 ; a < 0.
Trả lời:
Hàm số y = ax2 + bx + c
====== **** mời các bạn xem câu tiếp bên dưới **** =====