Câu hỏi:
Cho tam giác ABC có BC = 5, CA = 6, AB = 7. Côsin của góc có số đo lớn nhất trong tam giác đã cho là
A. \(\frac{2}{5}\);
B. \(\frac{1}{5}\);
Đáp án chính xác
C. \( – \frac{1}{5}\);
D. \( – \frac{2}{5}\).
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B.
Xét tam giác ABC có: 7 > 6 > 5, suy ra: AB > CA > BC
\( \Rightarrow \widehat C > \widehat B > \widehat A\)( quan hệ giữa góc và cạnh đối diện: trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn).
Vậy góc có số đo lớn nhất trong tam giác là góc C.
Áp dụng định lý côsin trong tam giác ABC ta có:
\(\cos C = \frac{{A{C^2} + B{C^2} – A{B^2}}}{{2.AC.BC}} = \frac{{{6^2} + {5^2} – {7^2}}}{{2.6.5}} = \frac{1}{5}\).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có \(\widehat A = 112^\circ \), AC = 7 và AB = 10. Tính độ dài của cạnh BC và các góc B, C của tam giác đó.
Câu hỏi:
Cho tam giác ABC có \(\widehat A = 112^\circ \), AC = 7 và AB = 10. Tính độ dài của cạnh BC và các góc B, C của tam giác đó.
Trả lời:
Hướng dẫn giải:
Theo định lý côsin, ta có:
BC2 = AB2 + AC2 −2.AB.AC.cosA = 72 + 102 −2.7.10.cos112° ≈ 201,44.
Vậy \(BC \approx \sqrt {201,44} \approx 14,19\).
Theo hệ quả của định lý cô sin, ta có:
\(\cos B = \frac{{A{B^2} + B{C^2} – A{C^2}}}{{2.AB.BC}} \approx \frac{{{{10}^2} + {{14,19}^2} – {7^2}}}{{2.10.14,19}} \approx 0,89\).
Suy ra \(\widehat B \approx 27^\circ 7’\).
Ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat C = 180^\circ – \left( {\widehat A + \widehat B} \right)\)
Do đó: \(\widehat C \approx 40^\circ 53’\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có \(\widehat A = 63^\circ \), \(\widehat B = 87^\circ \), BC = 15. Tính độ dài cạnh AB, AC của tam giác đó.
Câu hỏi:
Cho tam giác ABC có \(\widehat A = 63^\circ \), \(\widehat B = 87^\circ \), BC = 15. Tính độ dài cạnh AB, AC của tam giác đó.
Trả lời:
Hướng dẫn giải:
Đặt a = BC, b = AC, c = AB.
Ta có a = 15.
Áp dụng định lí tổng 3 góc trong tam giác ta có:
\(\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat C = 180^\circ – \left( {\widehat A + \widehat B} \right)\)\( = 180^\circ – \left( {63^\circ + 87^\circ } \right) = 30^\circ \).
Áp dụng định lý sin, ta có \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Suy ra \(AC = b = \frac{{a\sin B}}{{\sin A}} = \frac{{15.\sin 87^\circ }}{{\sin 63^\circ }} \approx 16,81\);
\(AB = c = \frac{{a\sin C}}{{\sin A}} = \frac{{15.\sin 30^\circ }}{{\sin 63^\circ }} \approx 8,42\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có a = 4, b = 6 và cosC = \(\frac{2}{3}\). Giá trị của c bằng:
Câu hỏi:
Cho tam giác ABC có a = 4, b = 6 và cosC = \(\frac{2}{3}\). Giá trị của c bằng:
A. \(3\sqrt 5 \);
B. \(2\sqrt 5 \);
Đáp án chính xác
C. \(5\sqrt 2 \);
D. \(5\sqrt 3 \).
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B.
Áp dụng định lý côsin vào tam giác ABC ta có:\({c^2} = {a^2} + {b^2} – 2ab\cos C\)
Thay số
\({c^2} = {4^2} + {6^2} – 2.4.6.\frac{2}{3} = 20\).
Do đó: \(c = \sqrt {20} = 2\sqrt 5 \).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác DEF có DE = 4 cm; DF = 5 cm và EF = 3 cm. Số đo của của góc D gần nhất với giá trị nào dưới đây?
Câu hỏi:
Cho tam giác DEF có DE = 4 cm; DF = 5 cm và EF = 3 cm. Số đo của của góc D gần nhất với giá trị nào dưới đây?
A. 78,63°;
B. 78,36°;
C. 63,78°;
D. 36,87°.
Đáp án chính xác
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: D.
Áp dụng hệ quả của định lý côsin vào tam giác DEF ta được:
\(\cos D = \frac{{D{E^2} + D{F^2} – E{F^2}}}{{2.DE.DF}} = \frac{{{4^2} + {5^2} – {3^2}}}{{2.4.5}} = \frac{4}{5}\).
Do đó \(\widehat D \approx 36,87^\circ \).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có \(\widehat A = 60^\circ \), \(\widehat B = 45^\circ \), b = 4. Tính cạnh a.
Câu hỏi:
Cho tam giác ABC có \(\widehat A = 60^\circ \), \(\widehat B = 45^\circ \), b = 4. Tính cạnh a.
A. \(2\sqrt 6 \);
Đáp án chính xác
B. \(3\sqrt 6 \);
C. \(6\sqrt 2 \);
D. \(6\sqrt 3 \).
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: A.
Theo định lí sin ta có
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\)\( \Rightarrow a = \frac{{b.\sin A}}{{\sin B}}\)\( = \frac{{4.\sin 60^\circ }}{{\sin 45^\circ }} = 2\sqrt 6 \).====== **** mời các bạn xem câu tiếp bên dưới **** =====