Câu hỏi:
Người ta muốn xây dựng một tuyến đường hầm qua một ngọn núi để các em vùng cao đi học được dễ hơn (như hình dưới).
Độ dài đường hầm AB gần với kết quả nào dưới đây nhất?
A. 1 840 m;
B. 4 180 m;
C. 1 480 m;
Đáp án chính xác
D. 4 810 m.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C.
Áp dụng định lí côsin trong ∆ABC ta có:
\(A{B^2} = A{C^2} + B{C^2} – 2AC.BC.\cos \widehat C = 2\,190\,000\)
\( \Rightarrow AB = \sqrt {2\,\,190\,\,000} \approx 1479,86\left( m \right)\)
Độ dài đường hầm AB là: 1479,86 m.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tính khoảng cách giữa hai điểm ở hai đầu của một ao cá nhà bác An. Biết khoảng cách từ chỗ bác An đứng đến hai đầu ao lần lượt là 700 m và 900 m và bác An quan sát nhìn hai điểm này dưới một góc 60° như hình vẽ.
Câu hỏi:
Tính khoảng cách giữa hai điểm ở hai đầu của một ao cá nhà bác An. Biết khoảng cách từ chỗ bác An đứng đến hai đầu ao lần lượt là 700 m và 900 m và bác An quan sát nhìn hai điểm này dưới một góc 60° như hình vẽ.
Trả lời:
Hướng dẫn giải:
Theo định lí côsin ta có:
\(B{C^2} = A{B^2} + A{C^2} – 2AB.AC.cosA\)
\( = {700^2} + {900^2} – 2.700.900.cos60^\circ \)= 670 000.
Suy ra: BC = \(\sqrt {670000} \approx 818,5\)(m).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Từ vị trí điểm C người ta quan sát một cây cao (như hình vẽ).
Biết BC = 5 m, \(\widehat {ACB} = 45^\circ ,\widehat {CBA} = 50^\circ \). Chiều cao của cây bằng bao nhiêu?
Câu hỏi:
Từ vị trí điểm C người ta quan sát một cây cao (như hình vẽ).
Biết BC = 5 m, \(\widehat {ACB} = 45^\circ ,\widehat {CBA} = 50^\circ \). Chiều cao của cây bằng bao nhiêu?Trả lời:
Hướng dẫn giải:
Áp dụng định lí tổng 3 góc trong tam giác, ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \)\( \Rightarrow \widehat A = 85^\circ \).
Theo định lí sin ta có:
\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}}\)\( \Leftrightarrow \frac{{AB}}{{\sin 45^\circ }} = \frac{5}{{\sin 85^\circ }}\)\( \Leftrightarrow AB = \sin 45^\circ .\frac{5}{{\sin 85^\circ }}\)≈ 3,55 (m).
Vậy chiều cao của cây khoảng 3,55 m.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Khoảng cách từ A đến B không thể đo trực tiếp vì phải qua một đầm lầy nên người ta làm như sau: Xác định một điểm C sao cho ta đo được AC = 15 m, BC = 21 m và \(\widehat {ACB} = 80^\circ \). Khoảng cách AB gần nhất với kết quả nào dưới đây?
Câu hỏi:
Khoảng cách từ A đến B không thể đo trực tiếp vì phải qua một đầm lầy nên người ta làm như sau: Xác định một điểm C sao cho ta đo được AC = 15 m, BC = 21 m và \(\widehat {ACB} = 80^\circ \). Khoảng cách AB gần nhất với kết quả nào dưới đây?
A. 20 m;
B. 24 m;
Đáp án chính xác
C. 30 m;
D. 34 m.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B.
Ta mô phỏng bài toán như hình vẽ sau:
Theo định lí côsin ta có:
\(A{B^2} = B{C^2} + A{C^2} – 2.BC.AC.\cos C\).
Thay số: \(A{B^2} = {21^2} + {15^2} – 2.21.15.\cos 80^\circ \)≈ 556,6
Suy ra: AB ≈ \(\sqrt {556,6} \)≈ 23,6 (m).
Vậy khoảng cách AB là khoảng 23,6 m và gần nhất với kết quả 24 m.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Để xác định chiều cao của một tòa tháp mà không cần lên đỉnh của tòa nhà người ta làm như sau: đặt giác kế thẳng đứng cách chân tháp một khoảng AB = 55 m, chiều cao của giác kế là OA = 2 m.
Quay thanh giác kế sao cho khi ngắm theo thanh ta nhìn thấy đỉnh C của tháp. Đọc trên giác kế số đo góc \(\widehat {COD} = 60^\circ \).
Chiều cao của ngọn tháo gần nhất với giá trị nào sau đây?
Câu hỏi:
Để xác định chiều cao của một tòa tháp mà không cần lên đỉnh của tòa nhà người ta làm như sau: đặt giác kế thẳng đứng cách chân tháp một khoảng AB = 55 m, chiều cao của giác kế là OA = 2 m.
Quay thanh giác kế sao cho khi ngắm theo thanh ta nhìn thấy đỉnh C của tháp. Đọc trên giác kế số đo góc \(\widehat {COD} = 60^\circ \).
Chiều cao của ngọn tháo gần nhất với giá trị nào sau đây?A. 87 m;
B. 90 m;
C. 97 m;
Đáp án chính xác
D. 100 m.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C.
Xét tam giác OCD vuông tại D có OD = AB = 55 (m); \(\widehat {COD} = 60^\circ \)
Nên CD = OD. tan\(\widehat {COD}\) = 55\(\sqrt 3 \)≈ 95,26 (m).
Vậy chiều cao của tháp là: 95,26 + 2 = 97,26 (m).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Từ hai điểm A và B của một tòa nhà, người ta quan sát điểm pháo hoa nổ. Biết rằng AB = 120 m, phương nhìn AC tạo với phương ngang một góc 45°, phương nhìn BC tạo với phương ngang góc 15°30′.
Hỏi điểm pháo hoa nổ cao so với mặt đất gần với giá trị nào sau đây?
Câu hỏi:
Từ hai điểm A và B của một tòa nhà, người ta quan sát điểm pháo hoa nổ. Biết rằng AB = 120 m, phương nhìn AC tạo với phương ngang một góc 45°, phương nhìn BC tạo với phương ngang góc 15°30′.
Hỏi điểm pháo hoa nổ cao so với mặt đất gần với giá trị nào sau đây?A. 166 m;
Đáp án chính xác
B. 266 m;
C. 250 m;
D. 300 m.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: A.
Ta có: \(\widehat {BAC} = \widehat {BAH} – \widehat {CAH} = 90^\circ – 45^\circ = 45^\circ \).
Lại có: \(\widehat {ABC} = 90^\circ + 15^\circ 30′ = 105^\circ 30’\).
Trong tam giác ABC có: \(\widehat {BCA} = 180^\circ – \left( {\widehat {BAC} + \widehat {ABC}} \right) = 29^\circ 30’\).
Áp dụng định lí sin vào ∆ABC ta có:
\(\frac{{AC}}{{\sin \widehat {ABC}}} = \frac{{AB}}{{\sin \widehat {BCA}}}\)\( \Rightarrow \)AC = \(\sin \widehat {ABC}.\frac{{AB}}{{\sin \widehat {BCA}}}\)≈ 234,83 (m).
Trong tam giác vuông AHC có: \(\frac{{CH}}{{AC}} = \sin 45^\circ \)\( \Rightarrow \)CH = AC. sin 45° ≈ 166,05.
Vậy điểm pháo hoa nổ cao so với mặt đất khoảng 166,05 m.====== **** mời các bạn xem câu tiếp bên dưới **** =====